Multifunctional Three-Dimensional Porous MXene-Based Film with Superior Electromagnetic Wave Absorption and Flexible Electronics Performance
Corresponding Author: Lin Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 184
Abstract
The development of multifunctional electromagnetic wave-absorbing materials is essential for next-generation flexible electronics and intelligent protection systems. Herein, a novel three-dimensional porous MXene-based film integrated with metallic nickel nanoparticles (Ni-PMF) is designed and synthesized with the potential to address the urgent need for multifunctional electromagnetic wave-absorbing materials in next-generation intelligent systems. By using polystyrene spheres as sacrificial templates, a hierarchical porous architecture is constructed to prevent MXene nanosheet restacking, extend electromagnetic wave propagation paths, and optimize impedance matching. Simultaneously, uniformly distributed Ni nanoparticles introduce abundant heterogeneous interfaces, enhancing interfacial polarization and magnetic loss, which significantly improve electromagnetic wave attenuation. The Ni-PMF film achieves a minimum reflection loss of –64.7 dB and a broad effective absorption bandwidth of 7.2 GHz, covering the full Ku-band and outperforming most reported MXene thin film absorbers. In addition to superior electromagnetic wave absorption, the film demonstrates excellent electrothermal conversion and flexible strain-sensing capabilities, enabling integrated protection and real-time sensing functions. This multifunctional material offers promising potential for next-generation smart flexible electronic systems.
Highlights:
1 A multifunctional three-dimensional porous MXene-based film is fabricated, featuring a hierarchical porous structure that prevents nanosheet restacking and optimizes impedance matching.
2 The MXene-based film integrated with metallic nickel nanoparticles (Ni-PMF) film with a wide effective bandwidth of 7.2 GHz, fully covering the Ku-band and surpassing most reported MXene-based film absorbers. Simultaneously, the Ni-PMF exhibits excellent electrothermal conversion and flexible strain-sensing capabilities.
3 The Ni-PMF film integrates an electromagnetic attenuation mechanism, particularly abundant heterogeneous interfaces, thereby enhancing interfacial polarization and magnetic loss.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.-C. Zhang, M. Zhang, M.-Q. Wang, L. Chang, L. Li et al., Metal single-atoms toward electromagnetic wave-absorbing materials: insights and perspective. Adv. Funct. Mater. 34(44), 2405972 (2024). https://doi.org/10.1002/adfm.202405972
- Z. Cheng, S. Wang, J. Zhou, J. Yan, Y. Liu et al., 3D printed flexible composites based on carbon fiber-led interfacial modification strategy for enhanced microwave absorption. Chem. Eng. J. 502, 157810 (2024). https://doi.org/10.1016/j.cej.2024.157810
- Y. Zhang, D. Lan, T. Hou, M. Jia, Z. Jia et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with ultra-wide absorption band. Carbon 230, 119594 (2024). https://doi.org/10.1016/j.carbon.2024.119594
- X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13(1), 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
- J. Wang, T. Zhao, Z. Li, X. Duan, Z. Miao et al., Heterogeneous interfaces and interlayer phonon bridge structures in Ti3C2Tx@BNNB for efficient thermal management and electromagnetic wave absorption. Chem. Eng. J. 513, 162934 (2025). https://doi.org/10.1016/j.cej.2025.162934
- X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14(1), 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
- Y. Zhang, A. Liu, Y. Tian, Y. Tian, X. Qi et al., Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable electromagnetic interference shielding. Adv. Mater. 37(35), 2505521 (2025). https://doi.org/10.1002/adma.202505521
- J.-Z. Chen, P.-P. Chen, B.-Y. Lei, Y.-L. Hou, Z.-A. Li et al., Fabrication of MXene-encapsulated Co@C nanops for efficient microwave absorption in the X-band. Carbon 230, 119628 (2024). https://doi.org/10.1016/j.carbon.2024.119628
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- Z. Zhao, B. Shi, T. Wang, R. Wang, Q. Chang et al., Microscopic and macroscopic structural strategies for enhancing microwave absorption in MXene-based composites. Carbon 215, 118450 (2023). https://doi.org/10.1016/j.carbon.2023.118450
- K. Li, X. Wang, S. Li, P. Urbankowski, J. Li et al., An ultrafast conducting Polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16(4), e1906851 (2020). https://doi.org/10.1002/smll.201906851
- B. Wang, W. Zhang, C. Lai, Y. Liu, H. Guo et al., Facile design of flexible, strong, and highly conductive MXene-based composite films for multifunctional applications. Small 19(52), 2302335 (2023). https://doi.org/10.1002/smll.202302335
- J. Lu, L. Xu, C. Xie, Q. Wei, Q. Jiang et al., Porous-multilayered Ti3C2Tx MXene hybrid carbon foams for tunable and efficient electromagnetic wave absorption. Carbon 229, 119477 (2024). https://doi.org/10.1016/j.carbon.2024.119477
- M. He, X. Lv, H. Peng, Y. Zhou, H. Li et al., Biomimetic artificial nacre-like microfiber of Co/C modified cellulose nanofiber/Ti3C2Tx MXene with efficient microwave absorption. Chem. Eng. J. 491, 151726 (2024). https://doi.org/10.1016/j.cej.2024.151726
- S. Liu, Y. Lian, Y. Zhao, H. Hou, J. Ren et al., Recent advances of MXene-based nanocomposites towards microwave absorption: a review. Adv. Compos. Hybrid Mater. 8(1), 144 (2025). https://doi.org/10.1007/s42114-024-01145-5
- X. Wang, G. Dong, F. Pan, C. Lin, B. Yuan et al., Metal-support interaction induced electron localization in rationally designed metal sites anchored MXene enables boosted electromagnetic wave attenuation. Nano-Micro Lett. 17(1), 309 (2025). https://doi.org/10.1007/s40820-025-01819-9
- A. Iqbal, P. Sambyal, J. Kwon, M. Han, J. Hong et al., Enhanced absorption of electromagnetic waves in Ti3C2T MXene films with segregated polymer inclusions. Compos. Sci. Technol. 213, 108878 (2021). https://doi.org/10.1016/j.compscitech.2021.108878
- L. Chang, Y.-Z. Wang, X.-C. Zhang, L. Li, H.-Z. Zhai et al., Toward high performance microwave absorber by implanting La0.8CoO3 nanops on rGO. J. Mater. Sci. Technol. 174, 176–187 (2024). https://doi.org/10.1016/j.jmst.2023.06.062
- Y. Zhou, W. Zhang, D. Pan, Z. Li, B. Zhou et al., Absorption-reflection-transmission power coefficient guiding gradient distribution of magnetic MXene in layered composites for electromagnetic wave absorption. Nano-Micro Lett. 17(1), 147 (2025). https://doi.org/10.1007/s40820-025-01675-7
- Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 36(19), 2311411 (2024). https://doi.org/10.1002/adma.202311411
- J. Wang, Z. Miao, K. Gao, Z. Li, X. Zhang et al., Integration of heterogeneous interfaces and multi-dimensional encapsulation structure in Fe2N@CNTs enabling highly efficient thermal management and microwave absorption. Adv. Funct. Mater. 34(48), 2408696 (2024). https://doi.org/10.1002/adfm.202408696
- Y. Wu, S. Tan, G. Fang, Y. Zhang, G. Ji, Manipulating CNT films with atomic precision for absorption effectiveness–enhanced electromagnetic interference shielding and adaptive infrared camouflage. Adv. Funct. Mater. 35(18), 2402193 (2025). https://doi.org/10.1002/adfm.202402193
- J. Xiao, B. Zhan, M. He, X. Qi, Y. Zhang et al., Mechanically robust and thermal insulating nanofiber elastomer for hydrophobic, corrosion-resistant, and flexible multifunctional electromagnetic wave absorbers. Adv. Funct. Mater. 35(14), 2419266 (2025). https://doi.org/10.1002/adfm.202419266
- X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption. Carbon 208, 374–383 (2023). https://doi.org/10.1016/j.carbon.2023.03.054
- Y. Hou, K. Liu, J. Chen, B. Wang, X. He et al., Bimetallic MOFs/MXene derived CoNi@C@Ti3C2Tx/TiO2 nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 216, 118587 (2024). https://doi.org/10.1016/j.carbon.2023.118587
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- Y. Meng, B. Cai, Y. Zhou, L. Zhou, Y. Zhang et al., Bionic coral reef inspired enhanced scattering of trimetallic LDH self assembled Ti3C2Tₓ MXene for advanced microwave absorption. Nano Res. 18(11), 94907842 (2025)
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16(6), 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
- X. Wang, X. Chen, Q. He, Y. Hui, C. Xu et al., Bidirectional, multilayer MXene/polyimide aerogels for ultra-broadband microwave absorption. Adv. Mater. 36(36), e2401733 (2024). https://doi.org/10.1002/adma.202401733
- L. Chang, T. Liu, X. Fan, X. Zhang, X. Zhang et al., MXene derived aerogel with hetero-dimensional for multispectral response and devices. J. Mater. Sci. Technol. 245, 77–87 (2026). https://doi.org/10.1016/j.jmst.2025.05.026
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Y. Zhuo, K. Wang, M. Chen, Z. Fan, Z. Sun et al., Dimethyl sulfoxide and sodium chloride modulate the crystal structure in PMIA to enhance dyeing performance: molecular dynamics simulation and experimental investigations. Adv. Sci. 12(15), 2414544 (2025). https://doi.org/10.1002/advs.202414544
- M. Han, X. Yin, X. Li, B. Anasori, L. Zhang et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9(23), 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602
- F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36(14), e2311135 (2024). https://doi.org/10.1002/adma.202311135
- B. Li, Z. Ma, X. Zhang, J. Xu, Y. Chen et al., NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption. Small 19(12), 2207197 (2023). https://doi.org/10.1002/smll.202207197
- X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang et al., CoNi nanops encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020). https://doi.org/10.1016/j.cej.2019.123208
- B. Zhao, J. Deng, L. Liang, C. Zuo, Z. Bai et al., Lightweight porous Co3O4 and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties. CrystEngComm 19(41), 6095–6106 (2017). https://doi.org/10.1039/c7ce01464c
- B. Shi, Z. Xie, Y. Duan, G. Chen, Z. Li et al., Dual-template synthetic biomass-derived carbon foam integrating heat insulation, sound absorption and microwave absorption. J. Mater. Sci. Technol. 236, 77–85 (2025). https://doi.org/10.1016/j.jmst.2025.02.045
- Y. Liu, J. Zhou, C. Li, H. Zhang, Y. Wang et al., Interfacial coupling effects in two-dimensional ordered arrays for microwave attenuation. Nat. Commun. 16(1), 202 (2025). https://doi.org/10.1038/s41467-024-55776-9
- J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17(1), 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
- Y. Lian, D. Lan, X. Jiang, L. Wang, S. Yan et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interface Sci. 676, 217–226 (2024). https://doi.org/10.1016/j.jcis.2024.07.102
- Z. Gao, C. Fang, Y. Gao, X. Yin, S. Zhang et al., Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films. Nat. Commun. 16(1), 312 (2025). https://doi.org/10.1038/s41467-024-55030-2
- X. Zhang, M. Wang, L. Chang, C. Yu, X. Fan et al., Kelp-like carbon nanoribbons superstructures with embedded Ni nanops for intelligent flexible electromagnetic protection and sensing applications. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508333
- F. Wen, H. Yi, L. Qiao, H. Zheng, D. Zhou et al., Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst. Appl. Phys. Lett. 92(4), 042507 (2008). https://doi.org/10.1063/1.2839382
- F. Bødker, S. Mørup, S. Linderoth, Surface effects in metallic iron nanops. Phys. Rev. Lett. 72(2), 282–285 (1994). https://doi.org/10.1103/physrevlett.72.282
- X. Ou, J. He, Z. Xia, J. An, J. Hao et al., Optimized microwave magnetic characteristics for patterned FeNi nanop films manufactured by electric field-assisted deposition. J. Magn. Magn. Mater. 447, 61–67 (2018). https://doi.org/10.1016/j.jmmm.2017.09.071
- A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69(11), 7762–7764 (1991). https://doi.org/10.1063/1.347502
- Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016). https://doi.org/10.1021/acsami.6b12178
- Z. Tian, F. Hu, P. Zhang, Y. Fan, A.S. Shamshirgar et al., High-entropy engineering of A-site in MAX phases toward superior microwave absorption properties. Matter (2025). https://doi.org/10.1016/j.matt.2025.102367
- X. Sun, Z. Wu, X. Tan, Y. Xing, P. Huang et al., In situ “work-invaliding-awakened” of reduced graphene oxide/SiO2 bilayer aerogels for broadband microwave absorption based on thermally reduced reconstructed carbon networks. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202512145
- L. Xing, H. Cheng, Y. Li, Q. Chen, C. Liu et al., MoS2 decorated on 1D MoS2@Co/NC@CF hierarchical fibrous membranes for enhanced microwave absorption. Small 21(1), 2407337 (2025). https://doi.org/10.1002/smll.202407337
- J. Wu, T. Wang, J. Kong, Microwave absorption properties of Ni/porous carbon fiber composites derived from flax fiber templates. Carbon 238, 120305 (2025). https://doi.org/10.1016/j.carbon.2025.120305
- F. Hu, P. Ding, F. Wu, P. Zhang, W. Zheng et al., Novel cable-like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra-wideband electromagnetic wave absorption. Carbon Energy 6(12), e638 (2024). https://doi.org/10.1002/cey2.638
- H. Zhang, K. Kuang, Y. Zhang, C. Sun, T. Yuan et al., Multifunctional carbon foam with nanoscale chiral magnetic heterostructures for broadband microwave absorption in low frequency. Nano-Micro Lett. 17(1), 133 (2025). https://doi.org/10.1007/s40820-025-01658-8
- Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17(1), 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
- Y. Liu, R. Li, M. Li, Y. Qing, Electromagnetic coupling induced by cross-scale synergistic manipulation to boost broadband microwave absorption of Co-MOF derived carbon metamaterial. Carbon 243, 120623 (2025). https://doi.org/10.1016/j.carbon.2025.120623
- B. Li, X. Fan, Z. Ma, Y. Chen, Copper single atoms on N-doped hollow nanocubes for efficient electromagnetic wave attenuation. Small 21(33), e2505033 (2025). https://doi.org/10.1002/smll.202505033
- L. Du, Y. Li, Q. Zhou, L. Zhang, T. Shi et al., Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications. J. Colloid Interface Sci. 679, 987–994 (2025). https://doi.org/10.1016/j.jcis.2024.10.057
- S. Tu, Q. Jiang, X. Zhang, H.N. Alshareef, Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 12(4), 3369–3377 (2018). https://doi.org/10.1021/acsnano.7b08895
- W. Huang, W. Gao, S. Zuo, L. Zhang, K. Pei et al., Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale hetero-interfaces. J. Mater. Chem. A 10(3), 1290–1298 (2022). https://doi.org/10.1039/d1ta09357f
- T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 422, 130079 (2021). https://doi.org/10.1016/j.cej.2021.130079
- J. Du, T. Li, J. Li, J. Tang, R. Zhang et al., Design of flexible MXene/graphene-based fiber fabrics for broadband electromagnetic wave absorption. Adv. Fiber Mater. 7(3), 811–826 (2025). https://doi.org/10.1007/s42765-025-00523-y
- P. Chen, S. He, T. Wang, C. Wang, J. Tao et al., Melanin-like nanofibers with highly ordered structures achieve ultrahigh specific electromagnetic interference shielding efficiency. Nat. Commun. 16(1), 7127 (2025). https://doi.org/10.1038/s41467-025-62367-9
- W. Xie, J. Xie, S. Li, J. Liu, X. Xiao et al., Transparent and durable terahertz absorber based on enhanced wave-ion interaction. Adv. Funct. Mater. 35(19), 2418541 (2025). https://doi.org/10.1002/adfm.202418541
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- X.-X. Fan, M. Zhang, X.-C. Zhang, L. Li, M.-S. Cao, A pomegranate-like nanolayer featuring a core-shell architectural design for thermal-mechanical-electromagnetic responses and sensor. Adv. Funct. Mater. 35(16), 2421144 (2025). https://doi.org/10.1002/adfm.202421144
- B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33(41), 2307301 (2023). https://doi.org/10.1002/adfm.202307301
- X. Guan, S. Tan, L. Wang, Y. Zhao, G. Ji, Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano 17(20), 20525–20536 (2023). https://doi.org/10.1021/acsnano.3c07300
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- W. Huang, X. Liu, Y. Wang, J. Feng, J. Huang et al., Ultra-broadband and ultra-high electromagnetic interference shielding performance of aligned and compact MXene films. Nano-Micro Lett. 17(1), 234 (2025). https://doi.org/10.1007/s40820-025-01750-z
- Y. Shi, Z. Xiang, L. Cai, F. Pan, Y. Dong et al., Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 16(5), 7816–7833 (2022). https://doi.org/10.1021/acsnano.2c00448
- F. Hu, N. Gong, J. Zeng, P. Li, T. Wang et al., Aramid nanofiber-based artificial nacre-supported graphene/silver nanowire nanopapers for electromagnetic interference shielding and thermal management. Adv. Funct. Mater. 34(42), 2405016 (2024). https://doi.org/10.1002/adfm.202405016
- C. Xu, Z. Li, T. Hang, Y. Chen, T. He et al., Multi-scale MXene/silver nanowire composite foams with double conductive networks for multifunctional integration. Adv. Sci. 11(30), 2403551 (2024). https://doi.org/10.1002/advs.202403551
- Z.-H. Zeng, N. Wu, J.-J. Wei, Y.-F. Yang, T.-T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- J. Peng, F. Ge, W. Han, T. Wu, J. Tang et al., MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring. J. Mater. Sci. Technol. 212, 272–280 (2025). https://doi.org/10.1016/j.jmst.2024.06.011
- Y. Jing, Z. Zhao, X. Cao, Q. Sun, Y. Yuan et al., Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management. Nat. Commun. 14(1), 8060 (2023). https://doi.org/10.1038/s41467-023-43772-4
- J. Xiao, M. He, B. Zhan, H. Guo, J.-L. Yang et al., Multifunctional microwave absorption materials: construction strategies and functional applications. Mater. Horiz. 11(23), 5874–5894 (2024). https://doi.org/10.1039/d4mh00793j
References
X.-C. Zhang, M. Zhang, M.-Q. Wang, L. Chang, L. Li et al., Metal single-atoms toward electromagnetic wave-absorbing materials: insights and perspective. Adv. Funct. Mater. 34(44), 2405972 (2024). https://doi.org/10.1002/adfm.202405972
Z. Cheng, S. Wang, J. Zhou, J. Yan, Y. Liu et al., 3D printed flexible composites based on carbon fiber-led interfacial modification strategy for enhanced microwave absorption. Chem. Eng. J. 502, 157810 (2024). https://doi.org/10.1016/j.cej.2024.157810
Y. Zhang, D. Lan, T. Hou, M. Jia, Z. Jia et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with ultra-wide absorption band. Carbon 230, 119594 (2024). https://doi.org/10.1016/j.carbon.2024.119594
X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13(1), 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
J. Wang, T. Zhao, Z. Li, X. Duan, Z. Miao et al., Heterogeneous interfaces and interlayer phonon bridge structures in Ti3C2Tx@BNNB for efficient thermal management and electromagnetic wave absorption. Chem. Eng. J. 513, 162934 (2025). https://doi.org/10.1016/j.cej.2025.162934
X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14(1), 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
Y. Zhang, A. Liu, Y. Tian, Y. Tian, X. Qi et al., Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable electromagnetic interference shielding. Adv. Mater. 37(35), 2505521 (2025). https://doi.org/10.1002/adma.202505521
J.-Z. Chen, P.-P. Chen, B.-Y. Lei, Y.-L. Hou, Z.-A. Li et al., Fabrication of MXene-encapsulated Co@C nanops for efficient microwave absorption in the X-band. Carbon 230, 119628 (2024). https://doi.org/10.1016/j.carbon.2024.119628
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
Z. Zhao, B. Shi, T. Wang, R. Wang, Q. Chang et al., Microscopic and macroscopic structural strategies for enhancing microwave absorption in MXene-based composites. Carbon 215, 118450 (2023). https://doi.org/10.1016/j.carbon.2023.118450
K. Li, X. Wang, S. Li, P. Urbankowski, J. Li et al., An ultrafast conducting Polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16(4), e1906851 (2020). https://doi.org/10.1002/smll.201906851
B. Wang, W. Zhang, C. Lai, Y. Liu, H. Guo et al., Facile design of flexible, strong, and highly conductive MXene-based composite films for multifunctional applications. Small 19(52), 2302335 (2023). https://doi.org/10.1002/smll.202302335
J. Lu, L. Xu, C. Xie, Q. Wei, Q. Jiang et al., Porous-multilayered Ti3C2Tx MXene hybrid carbon foams for tunable and efficient electromagnetic wave absorption. Carbon 229, 119477 (2024). https://doi.org/10.1016/j.carbon.2024.119477
M. He, X. Lv, H. Peng, Y. Zhou, H. Li et al., Biomimetic artificial nacre-like microfiber of Co/C modified cellulose nanofiber/Ti3C2Tx MXene with efficient microwave absorption. Chem. Eng. J. 491, 151726 (2024). https://doi.org/10.1016/j.cej.2024.151726
S. Liu, Y. Lian, Y. Zhao, H. Hou, J. Ren et al., Recent advances of MXene-based nanocomposites towards microwave absorption: a review. Adv. Compos. Hybrid Mater. 8(1), 144 (2025). https://doi.org/10.1007/s42114-024-01145-5
X. Wang, G. Dong, F. Pan, C. Lin, B. Yuan et al., Metal-support interaction induced electron localization in rationally designed metal sites anchored MXene enables boosted electromagnetic wave attenuation. Nano-Micro Lett. 17(1), 309 (2025). https://doi.org/10.1007/s40820-025-01819-9
A. Iqbal, P. Sambyal, J. Kwon, M. Han, J. Hong et al., Enhanced absorption of electromagnetic waves in Ti3C2T MXene films with segregated polymer inclusions. Compos. Sci. Technol. 213, 108878 (2021). https://doi.org/10.1016/j.compscitech.2021.108878
L. Chang, Y.-Z. Wang, X.-C. Zhang, L. Li, H.-Z. Zhai et al., Toward high performance microwave absorber by implanting La0.8CoO3 nanops on rGO. J. Mater. Sci. Technol. 174, 176–187 (2024). https://doi.org/10.1016/j.jmst.2023.06.062
Y. Zhou, W. Zhang, D. Pan, Z. Li, B. Zhou et al., Absorption-reflection-transmission power coefficient guiding gradient distribution of magnetic MXene in layered composites for electromagnetic wave absorption. Nano-Micro Lett. 17(1), 147 (2025). https://doi.org/10.1007/s40820-025-01675-7
Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 36(19), 2311411 (2024). https://doi.org/10.1002/adma.202311411
J. Wang, Z. Miao, K. Gao, Z. Li, X. Zhang et al., Integration of heterogeneous interfaces and multi-dimensional encapsulation structure in Fe2N@CNTs enabling highly efficient thermal management and microwave absorption. Adv. Funct. Mater. 34(48), 2408696 (2024). https://doi.org/10.1002/adfm.202408696
Y. Wu, S. Tan, G. Fang, Y. Zhang, G. Ji, Manipulating CNT films with atomic precision for absorption effectiveness–enhanced electromagnetic interference shielding and adaptive infrared camouflage. Adv. Funct. Mater. 35(18), 2402193 (2025). https://doi.org/10.1002/adfm.202402193
J. Xiao, B. Zhan, M. He, X. Qi, Y. Zhang et al., Mechanically robust and thermal insulating nanofiber elastomer for hydrophobic, corrosion-resistant, and flexible multifunctional electromagnetic wave absorbers. Adv. Funct. Mater. 35(14), 2419266 (2025). https://doi.org/10.1002/adfm.202419266
X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption. Carbon 208, 374–383 (2023). https://doi.org/10.1016/j.carbon.2023.03.054
Y. Hou, K. Liu, J. Chen, B. Wang, X. He et al., Bimetallic MOFs/MXene derived CoNi@C@Ti3C2Tx/TiO2 nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 216, 118587 (2024). https://doi.org/10.1016/j.carbon.2023.118587
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
Y. Meng, B. Cai, Y. Zhou, L. Zhou, Y. Zhang et al., Bionic coral reef inspired enhanced scattering of trimetallic LDH self assembled Ti3C2Tₓ MXene for advanced microwave absorption. Nano Res. 18(11), 94907842 (2025)
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
C. Fu, Z. Sheng, X. Zhang, Laminated structural engineering strategy toward carbon nanotube-based aerogel films. ACS Nano 16(6), 9378–9388 (2022). https://doi.org/10.1021/acsnano.2c02193
X. Wang, X. Chen, Q. He, Y. Hui, C. Xu et al., Bidirectional, multilayer MXene/polyimide aerogels for ultra-broadband microwave absorption. Adv. Mater. 36(36), e2401733 (2024). https://doi.org/10.1002/adma.202401733
L. Chang, T. Liu, X. Fan, X. Zhang, X. Zhang et al., MXene derived aerogel with hetero-dimensional for multispectral response and devices. J. Mater. Sci. Technol. 245, 77–87 (2026). https://doi.org/10.1016/j.jmst.2025.05.026
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Y. Zhuo, K. Wang, M. Chen, Z. Fan, Z. Sun et al., Dimethyl sulfoxide and sodium chloride modulate the crystal structure in PMIA to enhance dyeing performance: molecular dynamics simulation and experimental investigations. Adv. Sci. 12(15), 2414544 (2025). https://doi.org/10.1002/advs.202414544
M. Han, X. Yin, X. Li, B. Anasori, L. Zhang et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9(23), 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602
F. Pan, Y. Shi, Y. Yang, H. Guo, L. Li et al., Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 36(14), e2311135 (2024). https://doi.org/10.1002/adma.202311135
B. Li, Z. Ma, X. Zhang, J. Xu, Y. Chen et al., NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption. Small 19(12), 2207197 (2023). https://doi.org/10.1002/smll.202207197
X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang et al., CoNi nanops encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020). https://doi.org/10.1016/j.cej.2019.123208
B. Zhao, J. Deng, L. Liang, C. Zuo, Z. Bai et al., Lightweight porous Co3O4 and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties. CrystEngComm 19(41), 6095–6106 (2017). https://doi.org/10.1039/c7ce01464c
B. Shi, Z. Xie, Y. Duan, G. Chen, Z. Li et al., Dual-template synthetic biomass-derived carbon foam integrating heat insulation, sound absorption and microwave absorption. J. Mater. Sci. Technol. 236, 77–85 (2025). https://doi.org/10.1016/j.jmst.2025.02.045
Y. Liu, J. Zhou, C. Li, H. Zhang, Y. Wang et al., Interfacial coupling effects in two-dimensional ordered arrays for microwave attenuation. Nat. Commun. 16(1), 202 (2025). https://doi.org/10.1038/s41467-024-55776-9
J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17(1), 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
Y. Lian, D. Lan, X. Jiang, L. Wang, S. Yan et al., Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interface Sci. 676, 217–226 (2024). https://doi.org/10.1016/j.jcis.2024.07.102
Z. Gao, C. Fang, Y. Gao, X. Yin, S. Zhang et al., Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films. Nat. Commun. 16(1), 312 (2025). https://doi.org/10.1038/s41467-024-55030-2
X. Zhang, M. Wang, L. Chang, C. Yu, X. Fan et al., Kelp-like carbon nanoribbons superstructures with embedded Ni nanops for intelligent flexible electromagnetic protection and sensing applications. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508333
F. Wen, H. Yi, L. Qiao, H. Zheng, D. Zhou et al., Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst. Appl. Phys. Lett. 92(4), 042507 (2008). https://doi.org/10.1063/1.2839382
F. Bødker, S. Mørup, S. Linderoth, Surface effects in metallic iron nanops. Phys. Rev. Lett. 72(2), 282–285 (1994). https://doi.org/10.1103/physrevlett.72.282
X. Ou, J. He, Z. Xia, J. An, J. Hao et al., Optimized microwave magnetic characteristics for patterned FeNi nanop films manufactured by electric field-assisted deposition. J. Magn. Magn. Mater. 447, 61–67 (2018). https://doi.org/10.1016/j.jmmm.2017.09.071
A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69(11), 7762–7764 (1991). https://doi.org/10.1063/1.347502
Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016). https://doi.org/10.1021/acsami.6b12178
Z. Tian, F. Hu, P. Zhang, Y. Fan, A.S. Shamshirgar et al., High-entropy engineering of A-site in MAX phases toward superior microwave absorption properties. Matter (2025). https://doi.org/10.1016/j.matt.2025.102367
X. Sun, Z. Wu, X. Tan, Y. Xing, P. Huang et al., In situ “work-invaliding-awakened” of reduced graphene oxide/SiO2 bilayer aerogels for broadband microwave absorption based on thermally reduced reconstructed carbon networks. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202512145
L. Xing, H. Cheng, Y. Li, Q. Chen, C. Liu et al., MoS2 decorated on 1D MoS2@Co/NC@CF hierarchical fibrous membranes for enhanced microwave absorption. Small 21(1), 2407337 (2025). https://doi.org/10.1002/smll.202407337
J. Wu, T. Wang, J. Kong, Microwave absorption properties of Ni/porous carbon fiber composites derived from flax fiber templates. Carbon 238, 120305 (2025). https://doi.org/10.1016/j.carbon.2025.120305
F. Hu, P. Ding, F. Wu, P. Zhang, W. Zheng et al., Novel cable-like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra-wideband electromagnetic wave absorption. Carbon Energy 6(12), e638 (2024). https://doi.org/10.1002/cey2.638
H. Zhang, K. Kuang, Y. Zhang, C. Sun, T. Yuan et al., Multifunctional carbon foam with nanoscale chiral magnetic heterostructures for broadband microwave absorption in low frequency. Nano-Micro Lett. 17(1), 133 (2025). https://doi.org/10.1007/s40820-025-01658-8
Z. Guo, D. Lan, Z. Jia, Z. Gao, X. Shi et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 17(1), 23 (2024). https://doi.org/10.1007/s40820-024-01527-w
Y. Liu, R. Li, M. Li, Y. Qing, Electromagnetic coupling induced by cross-scale synergistic manipulation to boost broadband microwave absorption of Co-MOF derived carbon metamaterial. Carbon 243, 120623 (2025). https://doi.org/10.1016/j.carbon.2025.120623
B. Li, X. Fan, Z. Ma, Y. Chen, Copper single atoms on N-doped hollow nanocubes for efficient electromagnetic wave attenuation. Small 21(33), e2505033 (2025). https://doi.org/10.1002/smll.202505033
L. Du, Y. Li, Q. Zhou, L. Zhang, T. Shi et al., Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications. J. Colloid Interface Sci. 679, 987–994 (2025). https://doi.org/10.1016/j.jcis.2024.10.057
S. Tu, Q. Jiang, X. Zhang, H.N. Alshareef, Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 12(4), 3369–3377 (2018). https://doi.org/10.1021/acsnano.7b08895
W. Huang, W. Gao, S. Zuo, L. Zhang, K. Pei et al., Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale hetero-interfaces. J. Mater. Chem. A 10(3), 1290–1298 (2022). https://doi.org/10.1039/d1ta09357f
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 422, 130079 (2021). https://doi.org/10.1016/j.cej.2021.130079
J. Du, T. Li, J. Li, J. Tang, R. Zhang et al., Design of flexible MXene/graphene-based fiber fabrics for broadband electromagnetic wave absorption. Adv. Fiber Mater. 7(3), 811–826 (2025). https://doi.org/10.1007/s42765-025-00523-y
P. Chen, S. He, T. Wang, C. Wang, J. Tao et al., Melanin-like nanofibers with highly ordered structures achieve ultrahigh specific electromagnetic interference shielding efficiency. Nat. Commun. 16(1), 7127 (2025). https://doi.org/10.1038/s41467-025-62367-9
W. Xie, J. Xie, S. Li, J. Liu, X. Xiao et al., Transparent and durable terahertz absorber based on enhanced wave-ion interaction. Adv. Funct. Mater. 35(19), 2418541 (2025). https://doi.org/10.1002/adfm.202418541
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
X.-X. Fan, M. Zhang, X.-C. Zhang, L. Li, M.-S. Cao, A pomegranate-like nanolayer featuring a core-shell architectural design for thermal-mechanical-electromagnetic responses and sensor. Adv. Funct. Mater. 35(16), 2421144 (2025). https://doi.org/10.1002/adfm.202421144
B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33(41), 2307301 (2023). https://doi.org/10.1002/adfm.202307301
X. Guan, S. Tan, L. Wang, Y. Zhao, G. Ji, Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano 17(20), 20525–20536 (2023). https://doi.org/10.1021/acsnano.3c07300
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
W. Huang, X. Liu, Y. Wang, J. Feng, J. Huang et al., Ultra-broadband and ultra-high electromagnetic interference shielding performance of aligned and compact MXene films. Nano-Micro Lett. 17(1), 234 (2025). https://doi.org/10.1007/s40820-025-01750-z
Y. Shi, Z. Xiang, L. Cai, F. Pan, Y. Dong et al., Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 16(5), 7816–7833 (2022). https://doi.org/10.1021/acsnano.2c00448
F. Hu, N. Gong, J. Zeng, P. Li, T. Wang et al., Aramid nanofiber-based artificial nacre-supported graphene/silver nanowire nanopapers for electromagnetic interference shielding and thermal management. Adv. Funct. Mater. 34(42), 2405016 (2024). https://doi.org/10.1002/adfm.202405016
C. Xu, Z. Li, T. Hang, Y. Chen, T. He et al., Multi-scale MXene/silver nanowire composite foams with double conductive networks for multifunctional integration. Adv. Sci. 11(30), 2403551 (2024). https://doi.org/10.1002/advs.202403551
Z.-H. Zeng, N. Wu, J.-J. Wei, Y.-F. Yang, T.-T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
J. Peng, F. Ge, W. Han, T. Wu, J. Tang et al., MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring. J. Mater. Sci. Technol. 212, 272–280 (2025). https://doi.org/10.1016/j.jmst.2024.06.011
Y. Jing, Z. Zhao, X. Cao, Q. Sun, Y. Yuan et al., Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management. Nat. Commun. 14(1), 8060 (2023). https://doi.org/10.1038/s41467-023-43772-4
J. Xiao, M. He, B. Zhan, H. Guo, J.-L. Yang et al., Multifunctional microwave absorption materials: construction strategies and functional applications. Mater. Horiz. 11(23), 5874–5894 (2024). https://doi.org/10.1039/d4mh00793j