Li7La3Zr2O12/Polymethacrylate-Based Composite Electrolyte with Hybrid Solid Electrolyte Interphase for Ultra-stable Solid-State Lithium Batteries
Corresponding Author: Ying Xu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 189
Abstract
Li7La3Zr2O12-based electrolytes have got great promise for solid-state lithium (Li) metal batteries because of their high elastic modulus and wide electrochemical stability window. However, the insufficient contact and heterogeneous Li deposition severely hinder their practical applications. Here, a flexible ternary polymethacrylate (PMA) matrix is designed to incorporate with Ta-doped Li7La3Zr2O12 (LLZTO-PMA). The PMA matrix ensures excellent interfacial contact, while the synergistic effects of its polar carbonyl groups and its interaction with LLZTO creating fast interfacial Li+ pathways yield a high ionic conductivity of 0.266 mS cm − 1 at 20 °C. Moreover, the interaction between LLZTO and PMA matrix further guides the formation of a hybrid LiF/Li3N-rich solid electrolyte interphase, which allows a fast Li+ interfacial kinetic due to its lowered Li+ diffusion barrier. Consequently, the LLZTO-PMA electrolyte contributes an ultra-stable Li anode interphase, attaining a lifespan exceeding 10,000 h in symmetric cells and retaining over 96% capacity after 600 cycles in full battery, demonstrating a breakthrough for high-performance solid-state batteries.
Highlights:
1 A molecular engineering of Ta-doped Li7La3Zr2O12 (LLZTO) incorporated with polymethacrylate-based (PMA) copolymer moves beyond simple blending to combine the polar carbonyl groups and interfacial Li⁺ transport pathways, yielding high ionic conductivity (0.266 mS cm − 1) and high Li+ transference number (0.621) at 20 °C.
2 The integration of LLZTO triggers the in situ formation of a hybrid LiF-Li3N-rich solid electrolyte interphase with a low Li+ diffusion barrier for uniform Li deposition and exceptional interfacial stability.
3 The LLZTO-PMA contributes an ultra-stable anode interphase, thus delivering symmetric cell over 10,000 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Yu, Y. Liu, H. Li, Y. Sun, S. Guo et al., Ductile inorganic solid electrolytes for all-solid-state lithium batteries. Chem. Rev. 125(6), 3595–3662 (2025). https://doi.org/10.1021/acs.chemrev.4c00894
- Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
- H. Zhang, J. He, L. Dai, S. Dong, Y. Zhang et al., Hydrophobic modification of SiO2-encapsulated In2O3 catalyst: boosting efficient CO2 hydrogenation to methanol. Chem. Eng. J. 525, 169869 (2025). https://doi.org/10.1016/j.cej.2025.169869
- J. Shi, X. Wu, Y. Chen, Y. Zhang, X. Hou et al., Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chin. Chem. Lett. 36(5), 109938 (2025). https://doi.org/10.1016/j.cclet.2024.109938
- Y. Zhao, L. Chen, Y. Su, H. Jin, C. Wang, Review of garnet-type Li7La3Zr2O12 solid electrolyte: materials and interface issues. J. Mater. Sci. 60(2), 629–661 (2025). https://doi.org/10.1007/s10853-024-10568-w
- J. Wu, W. Chen, B. Hao, Z.-J. Jiang, G. Jin et al., Garnet-type solid-state electrolytes: crystal-phase regulation and interface modification for enhanced lithium metal batteries. Small 21(2), 2407983 (2025). https://doi.org/10.1002/smll.202407983
- S. Wang, L. Zhang, Z. Hu, B. Zhang, N. Li et al., Intrinsic structural and coordination chemistry insights of Li salts in rechargeable lithium batteries. Adv. Mater. 37(11), e2420428 (2025). https://doi.org/10.1002/adma.202420428
- J. Yang, X. Zhang, M. Hou, C. Ni, C. Chen et al., Research advances in interface engineering of solid-state lithium batteries. Carbon Neutralization 4(1), e188 (2025). https://doi.org/10.1002/cnl2.188
- Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- J. Zheng, M. Tang, Y.-Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55(40), 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
- W. Han, G. Li, J. Zhang, Diversifying ion-transport pathways of composite solid electrolytes for high-performance solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 16(21), 27280–27290 (2024). https://doi.org/10.1021/acsami.4c01689
- Z. Lu, J. Li, J. An, X. Zeng, J. Lan et al., Pre-oxidized and composite strategy greatly boosts performance of polyacrylonitrile/LLZO nanofibers for lithium-metal batteries. J. Colloid Interface Sci. 664, 882–892 (2024). https://doi.org/10.1016/j.jcis.2024.03.058
- L. Chen, X. Huang, R. Ma, W. Xiang, J. Ma et al., A nanocrystal garnet skeleton-derived high-performance composite solid-state electrolyte membrane. Energy Storage Mater 65, 103140 (2024). https://doi.org/10.1016/j.ensm.2023.103140
- J. Gou, Z. Zhang, S. Wang, J. Huang, K. Cui et al., An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries. Adv. Mater. 36(7), 2309677 (2024). https://doi.org/10.1002/adma.202309677
- P. Chen, B. Ding, H. Dou, X. Zhang, Ceramic–polymer composite solid-state electrolytes for solid-state lithium metal batteries: mechanism, strategy, and prospect. Small 21(24), 2503743 (2025). https://doi.org/10.1002/smll.202503743
- S. Liu, B. Wu, X. Bai, J. Zhang, X. Chang et al., A solvent-induced solid polymer electrolyte with controllable polymerization for low-temperature lithium metal batteries. Nano Lett. 25(13), 5241–5249 (2025). https://doi.org/10.1021/acs.nanolett.4c06471
- R. Whba, M.S. Su’ait, F. Whba, A. Ahmad, Research progress on polyacrylonitrile-based polymer electrolytes for electrochemical devices: insight into electrochemical performance. J. Power. Sources 606, 234539 (2024). https://doi.org/10.1016/j.jpowsour.2024.234539
- T. Yang, C. Wang, W. Zhang, Y. Xia, H. Huang et al., A critical review on composite solid electrolytes for lithium batteries: design strategies and interface engineering. J. Energy Chem. 84, 189–209 (2023). https://doi.org/10.1016/j.jechem.2023.05.011
- Z. Luo, Y. Cao, G. Xu, W. Sun, X. Xiao et al., Recent advances in robust and ultra-thin Li metal anode. Carbon Neutralization 3(4), 647–672 (2024). https://doi.org/10.1002/cnl2.147
- Y. Quan, X. Cui, L. Hu, Y. Kong, X. Zhang et al., Enhancing Li+ transportation at graphite-low concentration electrolyte interface via interphase modulation of LiNO3 and vinylene carbonate. Carbon Neutralization 4(1), e184 (2025). https://doi.org/10.1002/cnl2.184
- H. Wu, H. Jia, C. Wang, J.-G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
- B. Wu, C. Chen, L.H.J. Raijmakers, J. Liu, D.L. Danilov et al., Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: a review of current advances. Energy Storage Mater. 57, 508–539 (2023). https://doi.org/10.1016/j.ensm.2023.02.036
- U. Ali, K.J.B.A. Karim, N.A. Buang, A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55(4), 678–705 (2015). https://doi.org/10.1080/15583724.2015.1031377
- K. Sashmitha, M.U. Rani, A comprehensive review of polymer electrolyte for lithium-ion battery. Polym. Bull. 80(1), 89–135 (2023). https://doi.org/10.1007/s00289-021-04008-x
- R. Singh, H.-W. Rhee, Controlled polymerization for lithium-ion batteries. Energy Storage Mater. 52, 598–636 (2022). https://doi.org/10.1016/j.ensm.2022.08.029
- Y. Liu, Q. Zeng, Z. Li, A. Chen, J. Guan et al., Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv. Sci. 10(15), 2206978 (2023). https://doi.org/10.1002/advs.202206978
- G. Zhao, W. Liu, B. Zhang, Z. Zhao, W. Huang et al., Ion-conducting self-healing interlayer enabling ultrastable Li7La3Zr2O12-lithium interphase for high performance solid lithium metal batteries. Renewables 3(1), 21–30 (2025). https://doi.org/10.31635/renewables.025.202400075
- R. Tamate, Y. Peng, Y. Kamiyama, K. Nishikawa, Extremely tough, stretchable gel electrolytes with strong interpolymer hydrogen bonding prepared using concentrated electrolytes to stabilize lithium-metal anodes. Adv. Mater. 35(22), 2211679 (2023). https://doi.org/10.1002/adma.202211679
- Y. Xiao, J. Yang, N. Wang, X. Zhang, S. Liang et al., Challenges to Li7La3Zr2O12 system electrolyte and the modification: from powder to ceramic. J. Alloys Compd. 986, 174123 (2024). https://doi.org/10.1016/j.jallcom.2024.174123
- N. Shi, B. Yang, N. Chen, R. Chen, Li2CO3 contamination in garnet solid electrolyte: origins, impacts, and mitigation strategies. Energy Storage Mater. 77, 104173 (2025). https://doi.org/10.1016/j.ensm.2025.104173
- K. He, S.H. Cheng, J. Hu, Y. Zhang, H. Yang et al., In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 60(21), 12116–12123 (2021). https://doi.org/10.1002/anie.202103403
- Y. Ji, H. Du, K. Wang, J. Ma, W. Yang et al., Self-purification and surface-coordination dual-polymer/Li6.4La3Zr1.4Ta0.6O12 interphase achieves Li+-transport-enhanced composite solid-state electrolyte. J. Power. Sources 646, 237289 (2025). https://doi.org/10.1016/j.jpowsour.2025.237289
- X. Zhang, S. Cheng, C. Fu, G. Yin, P. Zuo et al., Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries. Adv. Energy Mater. 14(34), 2401802 (2024). https://doi.org/10.1002/aenm.202401802
- Z. Deng, S. Chen, K. Yang, Y. Song, S. Xue et al., Tailoring interfacial structures to regulate carrier transport in solid-state batteries. Adv. Mater. 36(38), e2407923 (2024). https://doi.org/10.1002/adma.202407923
- Q. Peng, Z. Liu, S. Chen, P. Duan, S. Cheng et al., Developing multifunctional amide additive by rational molecular design for high-performance Li metal batteries. Nano Energy 113, 108547 (2023). https://doi.org/10.1016/j.nanoen.2023.108547
- W. Wu, Y. Bo, D. Li, Y. Liang, J. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14(1), 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
- Y. Jin, R. Lin, Y. Li, X. Zhang, S. Tan et al., Revealing the influence of electron migration inside polymer electrolyte on Li+ transport and interphase reconfiguration for Li metal batteries. Angew. Chem. Int. Ed. 63(24), e202403661 (2024). https://doi.org/10.1002/anie.202403661
- B. Wei, Y. Li, W. Lin, J. Yu, D. Chen, A wrapped and infiltrated ∼20-μm-thick 3D ceramic framework composite enables fast Li+ diffusion and interfacial compatibility for lithium-metal batteries. Compos. Part B Eng. 272, 111192 (2024). https://doi.org/10.1016/j.compositesb.2024.111192
- H. Zhang, X. An, Y. Yang, Y. Long, S. Nie et al., Vertical aligned solid-state electrolyte templated by nanostructured “upright” cellulose film layers for advanced cell performance. EcoMat 5(4), e12317 (2023). https://doi.org/10.1002/eom2.12317
- W. Lin, H. Yuan, C. Tian, M. Song, T. Huang et al., Inorganic fillers tailored Li+ solvation sheath for stable lithium metal batteries. Energy Storage Mater. 70, 103472 (2024). https://doi.org/10.1016/j.ensm.2024.103472
- L. Wu, Y. Wang, M. Tang, Y. Liang, Z. Lin et al., Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Mater. 58, 40–47 (2023). https://doi.org/10.1016/j.ensm.2023.02.038
- X. Zhao, C. Wang, X. Fan, Y. Li, D. Li et al., Addressing the interface issues of all-solid-state lithium batteries by ultra-thin composite solid-state electrolyte combined with the integrated preparation technology. InfoMat 7(8), e70012 (2025). https://doi.org/10.1002/inf2.70012
- H. Xu, S. Liu, Z. Li, F. Ding, J. Liu et al., Synergistic effect of Ti3C2Tx MXene/PAN nanofiber and LLZTO ps on high-performance PEO-based solid electrolyte for lithium metal battery. J. Colloid Interface Sci. 668, 634–645 (2024). https://doi.org/10.1016/j.jcis.2024.04.201
- X. Zheng, D. Xu, N. Fu, Z. Yang, Ultrathin poly(cyclocarbonate-ether)-based composite electrolyte reinforced with high-strength functional skeleton. J. Energy Chem. 81, 603–612 (2023). https://doi.org/10.1016/j.jechem.2023.03.006
- Y. Li, X. Gao, W. Wang, J. Shi, H. Wang, Ga, V dual-doped LLZO modified PEO matrix composite solid-state electrolyte for fast Li+ conduction and ultra-stable all-solid-state lithium batteries. J. Power. Sources 629, 236027 (2025). https://doi.org/10.1016/j.jpowsour.2024.236027
- C. Fang, K. Huang, J. Zhao, S. Tian, H. Dou et al., Dual-filler reinforced PVDF-HFP based polymer electrolyte enabling high-safety design of lithium metal batteries. Nano Res. 17(6), 5251–5260 (2024). https://doi.org/10.1007/s12274-024-6502-z
- X. Zhan, X. Pang, F. Mao, J. Lin, M. Li et al., Interfacial reconstruction unlocks inherent ionic conductivity of Li-La-Zr-Ta-O garnet in organic polymer electrolyte for durable room-temperature all-solid-state batteries. Adv. Energy Mater. 14(42), 2402509 (2024). https://doi.org/10.1002/aenm.202402509
- Q. Zheng, Z. Zhao, G. Zhao, W. Huang, B. Zhang et al., CaF2 nanops enabling LiF-dominated solid electrolyte interphase for dendrite-free and ultra-stable lithium metal batteries. J. Colloid Interface Sci. 676, 551–559 (2024). https://doi.org/10.1016/j.jcis.2024.07.154
- M.J. Counihan, K.S. Chavan, P. Barai, D.J. Powers, Y. Zhang et al., The phantom menace of dynamic soft-shorts in solid-state battery research. Joule 8(1), 64–90 (2024). https://doi.org/10.1016/j.joule.2023.11.007
- D. Li, M. Lei, K. Chen, C. Li, Enable rechargeable carbon fluoride batteries with ultra-high rate and ultra-long life by electrolyte solvation structure and interface design. Nano Energy 141, 111074 (2025). https://doi.org/10.1016/j.nanoen.2025.111074
- Q. Wang, H. Xu, Y. Fan, S.-S. Chi, B. Han et al., Insight into multiple intermolecular coordination of composite solid electrolytes via cryo-electron microscopy for high-voltage all-solid-state lithium metal batteries. Adv. Mater. 36(23), 2314063 (2024). https://doi.org/10.1002/adma.202314063
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
- L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang et al., Interfaces in solid-state lithium batteries. Joule 2(10), 1991–2015 (2018). https://doi.org/10.1016/j.joule.2018.07.009
- C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32(4), 2107249 (2022). https://doi.org/10.1002/adfm.202107249
- Q. Gao, D. Wu, Z. Wang, P. Lu, X. Zhu et al., Superior lithium-metal all-solid-state batteries with in-situ formed Li3N-LiF-rich interphase. Energy Storage Mater. 63, 103007 (2023). https://doi.org/10.1016/j.ensm.2023.103007
- J. Liu, M. Wu, X. Li, D. Wu, H. Wang et al., Amide-functional, Li3N/LiF-rich heterostructured electrode electrolyte interphases for 4.6 V Li||LiCoO2 batteries. Adv. Energy Mater. 13(15), 2300084 (2023). https://doi.org/10.1002/aenm.202300084
References
T. Yu, Y. Liu, H. Li, Y. Sun, S. Guo et al., Ductile inorganic solid electrolytes for all-solid-state lithium batteries. Chem. Rev. 125(6), 3595–3662 (2025). https://doi.org/10.1021/acs.chemrev.4c00894
Z. Zhang, W.-Q. Han, From liquid to solid-state lithium metal batteries: fundamental issues and recent developments. Nano-Micro Lett. 16(1), 24 (2023). https://doi.org/10.1007/s40820-023-01234-y
H. Zhang, J. He, L. Dai, S. Dong, Y. Zhang et al., Hydrophobic modification of SiO2-encapsulated In2O3 catalyst: boosting efficient CO2 hydrogenation to methanol. Chem. Eng. J. 525, 169869 (2025). https://doi.org/10.1016/j.cej.2025.169869
J. Shi, X. Wu, Y. Chen, Y. Zhang, X. Hou et al., Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chin. Chem. Lett. 36(5), 109938 (2025). https://doi.org/10.1016/j.cclet.2024.109938
Y. Zhao, L. Chen, Y. Su, H. Jin, C. Wang, Review of garnet-type Li7La3Zr2O12 solid electrolyte: materials and interface issues. J. Mater. Sci. 60(2), 629–661 (2025). https://doi.org/10.1007/s10853-024-10568-w
J. Wu, W. Chen, B. Hao, Z.-J. Jiang, G. Jin et al., Garnet-type solid-state electrolytes: crystal-phase regulation and interface modification for enhanced lithium metal batteries. Small 21(2), 2407983 (2025). https://doi.org/10.1002/smll.202407983
S. Wang, L. Zhang, Z. Hu, B. Zhang, N. Li et al., Intrinsic structural and coordination chemistry insights of Li salts in rechargeable lithium batteries. Adv. Mater. 37(11), e2420428 (2025). https://doi.org/10.1002/adma.202420428
J. Yang, X. Zhang, M. Hou, C. Ni, C. Chen et al., Research advances in interface engineering of solid-state lithium batteries. Carbon Neutralization 4(1), e188 (2025). https://doi.org/10.1002/cnl2.188
Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
J. Zheng, M. Tang, Y.-Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55(40), 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
W. Han, G. Li, J. Zhang, Diversifying ion-transport pathways of composite solid electrolytes for high-performance solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 16(21), 27280–27290 (2024). https://doi.org/10.1021/acsami.4c01689
Z. Lu, J. Li, J. An, X. Zeng, J. Lan et al., Pre-oxidized and composite strategy greatly boosts performance of polyacrylonitrile/LLZO nanofibers for lithium-metal batteries. J. Colloid Interface Sci. 664, 882–892 (2024). https://doi.org/10.1016/j.jcis.2024.03.058
L. Chen, X. Huang, R. Ma, W. Xiang, J. Ma et al., A nanocrystal garnet skeleton-derived high-performance composite solid-state electrolyte membrane. Energy Storage Mater 65, 103140 (2024). https://doi.org/10.1016/j.ensm.2023.103140
J. Gou, Z. Zhang, S. Wang, J. Huang, K. Cui et al., An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries. Adv. Mater. 36(7), 2309677 (2024). https://doi.org/10.1002/adma.202309677
P. Chen, B. Ding, H. Dou, X. Zhang, Ceramic–polymer composite solid-state electrolytes for solid-state lithium metal batteries: mechanism, strategy, and prospect. Small 21(24), 2503743 (2025). https://doi.org/10.1002/smll.202503743
S. Liu, B. Wu, X. Bai, J. Zhang, X. Chang et al., A solvent-induced solid polymer electrolyte with controllable polymerization for low-temperature lithium metal batteries. Nano Lett. 25(13), 5241–5249 (2025). https://doi.org/10.1021/acs.nanolett.4c06471
R. Whba, M.S. Su’ait, F. Whba, A. Ahmad, Research progress on polyacrylonitrile-based polymer electrolytes for electrochemical devices: insight into electrochemical performance. J. Power. Sources 606, 234539 (2024). https://doi.org/10.1016/j.jpowsour.2024.234539
T. Yang, C. Wang, W. Zhang, Y. Xia, H. Huang et al., A critical review on composite solid electrolytes for lithium batteries: design strategies and interface engineering. J. Energy Chem. 84, 189–209 (2023). https://doi.org/10.1016/j.jechem.2023.05.011
Z. Luo, Y. Cao, G. Xu, W. Sun, X. Xiao et al., Recent advances in robust and ultra-thin Li metal anode. Carbon Neutralization 3(4), 647–672 (2024). https://doi.org/10.1002/cnl2.147
Y. Quan, X. Cui, L. Hu, Y. Kong, X. Zhang et al., Enhancing Li+ transportation at graphite-low concentration electrolyte interface via interphase modulation of LiNO3 and vinylene carbonate. Carbon Neutralization 4(1), e184 (2025). https://doi.org/10.1002/cnl2.184
H. Wu, H. Jia, C. Wang, J.-G. Zhang, W. Xu, Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11(5), 2003092 (2021). https://doi.org/10.1002/aenm.202003092
B. Wu, C. Chen, L.H.J. Raijmakers, J. Liu, D.L. Danilov et al., Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: a review of current advances. Energy Storage Mater. 57, 508–539 (2023). https://doi.org/10.1016/j.ensm.2023.02.036
U. Ali, K.J.B.A. Karim, N.A. Buang, A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55(4), 678–705 (2015). https://doi.org/10.1080/15583724.2015.1031377
K. Sashmitha, M.U. Rani, A comprehensive review of polymer electrolyte for lithium-ion battery. Polym. Bull. 80(1), 89–135 (2023). https://doi.org/10.1007/s00289-021-04008-x
R. Singh, H.-W. Rhee, Controlled polymerization for lithium-ion batteries. Energy Storage Mater. 52, 598–636 (2022). https://doi.org/10.1016/j.ensm.2022.08.029
Y. Liu, Q. Zeng, Z. Li, A. Chen, J. Guan et al., Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv. Sci. 10(15), 2206978 (2023). https://doi.org/10.1002/advs.202206978
G. Zhao, W. Liu, B. Zhang, Z. Zhao, W. Huang et al., Ion-conducting self-healing interlayer enabling ultrastable Li7La3Zr2O12-lithium interphase for high performance solid lithium metal batteries. Renewables 3(1), 21–30 (2025). https://doi.org/10.31635/renewables.025.202400075
R. Tamate, Y. Peng, Y. Kamiyama, K. Nishikawa, Extremely tough, stretchable gel electrolytes with strong interpolymer hydrogen bonding prepared using concentrated electrolytes to stabilize lithium-metal anodes. Adv. Mater. 35(22), 2211679 (2023). https://doi.org/10.1002/adma.202211679
Y. Xiao, J. Yang, N. Wang, X. Zhang, S. Liang et al., Challenges to Li7La3Zr2O12 system electrolyte and the modification: from powder to ceramic. J. Alloys Compd. 986, 174123 (2024). https://doi.org/10.1016/j.jallcom.2024.174123
N. Shi, B. Yang, N. Chen, R. Chen, Li2CO3 contamination in garnet solid electrolyte: origins, impacts, and mitigation strategies. Energy Storage Mater. 77, 104173 (2025). https://doi.org/10.1016/j.ensm.2025.104173
K. He, S.H. Cheng, J. Hu, Y. Zhang, H. Yang et al., In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 60(21), 12116–12123 (2021). https://doi.org/10.1002/anie.202103403
Y. Ji, H. Du, K. Wang, J. Ma, W. Yang et al., Self-purification and surface-coordination dual-polymer/Li6.4La3Zr1.4Ta0.6O12 interphase achieves Li+-transport-enhanced composite solid-state electrolyte. J. Power. Sources 646, 237289 (2025). https://doi.org/10.1016/j.jpowsour.2025.237289
X. Zhang, S. Cheng, C. Fu, G. Yin, P. Zuo et al., Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries. Adv. Energy Mater. 14(34), 2401802 (2024). https://doi.org/10.1002/aenm.202401802
Z. Deng, S. Chen, K. Yang, Y. Song, S. Xue et al., Tailoring interfacial structures to regulate carrier transport in solid-state batteries. Adv. Mater. 36(38), e2407923 (2024). https://doi.org/10.1002/adma.202407923
Q. Peng, Z. Liu, S. Chen, P. Duan, S. Cheng et al., Developing multifunctional amide additive by rational molecular design for high-performance Li metal batteries. Nano Energy 113, 108547 (2023). https://doi.org/10.1016/j.nanoen.2023.108547
W. Wu, Y. Bo, D. Li, Y. Liang, J. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14(1), 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
Y. Jin, R. Lin, Y. Li, X. Zhang, S. Tan et al., Revealing the influence of electron migration inside polymer electrolyte on Li+ transport and interphase reconfiguration for Li metal batteries. Angew. Chem. Int. Ed. 63(24), e202403661 (2024). https://doi.org/10.1002/anie.202403661
B. Wei, Y. Li, W. Lin, J. Yu, D. Chen, A wrapped and infiltrated ∼20-μm-thick 3D ceramic framework composite enables fast Li+ diffusion and interfacial compatibility for lithium-metal batteries. Compos. Part B Eng. 272, 111192 (2024). https://doi.org/10.1016/j.compositesb.2024.111192
H. Zhang, X. An, Y. Yang, Y. Long, S. Nie et al., Vertical aligned solid-state electrolyte templated by nanostructured “upright” cellulose film layers for advanced cell performance. EcoMat 5(4), e12317 (2023). https://doi.org/10.1002/eom2.12317
W. Lin, H. Yuan, C. Tian, M. Song, T. Huang et al., Inorganic fillers tailored Li+ solvation sheath for stable lithium metal batteries. Energy Storage Mater. 70, 103472 (2024). https://doi.org/10.1016/j.ensm.2024.103472
L. Wu, Y. Wang, M. Tang, Y. Liang, Z. Lin et al., Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Mater. 58, 40–47 (2023). https://doi.org/10.1016/j.ensm.2023.02.038
X. Zhao, C. Wang, X. Fan, Y. Li, D. Li et al., Addressing the interface issues of all-solid-state lithium batteries by ultra-thin composite solid-state electrolyte combined with the integrated preparation technology. InfoMat 7(8), e70012 (2025). https://doi.org/10.1002/inf2.70012
H. Xu, S. Liu, Z. Li, F. Ding, J. Liu et al., Synergistic effect of Ti3C2Tx MXene/PAN nanofiber and LLZTO ps on high-performance PEO-based solid electrolyte for lithium metal battery. J. Colloid Interface Sci. 668, 634–645 (2024). https://doi.org/10.1016/j.jcis.2024.04.201
X. Zheng, D. Xu, N. Fu, Z. Yang, Ultrathin poly(cyclocarbonate-ether)-based composite electrolyte reinforced with high-strength functional skeleton. J. Energy Chem. 81, 603–612 (2023). https://doi.org/10.1016/j.jechem.2023.03.006
Y. Li, X. Gao, W. Wang, J. Shi, H. Wang, Ga, V dual-doped LLZO modified PEO matrix composite solid-state electrolyte for fast Li+ conduction and ultra-stable all-solid-state lithium batteries. J. Power. Sources 629, 236027 (2025). https://doi.org/10.1016/j.jpowsour.2024.236027
C. Fang, K. Huang, J. Zhao, S. Tian, H. Dou et al., Dual-filler reinforced PVDF-HFP based polymer electrolyte enabling high-safety design of lithium metal batteries. Nano Res. 17(6), 5251–5260 (2024). https://doi.org/10.1007/s12274-024-6502-z
X. Zhan, X. Pang, F. Mao, J. Lin, M. Li et al., Interfacial reconstruction unlocks inherent ionic conductivity of Li-La-Zr-Ta-O garnet in organic polymer electrolyte for durable room-temperature all-solid-state batteries. Adv. Energy Mater. 14(42), 2402509 (2024). https://doi.org/10.1002/aenm.202402509
Q. Zheng, Z. Zhao, G. Zhao, W. Huang, B. Zhang et al., CaF2 nanops enabling LiF-dominated solid electrolyte interphase for dendrite-free and ultra-stable lithium metal batteries. J. Colloid Interface Sci. 676, 551–559 (2024). https://doi.org/10.1016/j.jcis.2024.07.154
M.J. Counihan, K.S. Chavan, P. Barai, D.J. Powers, Y. Zhang et al., The phantom menace of dynamic soft-shorts in solid-state battery research. Joule 8(1), 64–90 (2024). https://doi.org/10.1016/j.joule.2023.11.007
D. Li, M. Lei, K. Chen, C. Li, Enable rechargeable carbon fluoride batteries with ultra-high rate and ultra-long life by electrolyte solvation structure and interface design. Nano Energy 141, 111074 (2025). https://doi.org/10.1016/j.nanoen.2025.111074
Q. Wang, H. Xu, Y. Fan, S.-S. Chi, B. Han et al., Insight into multiple intermolecular coordination of composite solid electrolytes via cryo-electron microscopy for high-voltage all-solid-state lithium metal batteries. Adv. Mater. 36(23), 2314063 (2024). https://doi.org/10.1002/adma.202314063
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang et al., Interfaces in solid-state lithium batteries. Joule 2(10), 1991–2015 (2018). https://doi.org/10.1016/j.joule.2018.07.009
C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32(4), 2107249 (2022). https://doi.org/10.1002/adfm.202107249
Q. Gao, D. Wu, Z. Wang, P. Lu, X. Zhu et al., Superior lithium-metal all-solid-state batteries with in-situ formed Li3N-LiF-rich interphase. Energy Storage Mater. 63, 103007 (2023). https://doi.org/10.1016/j.ensm.2023.103007
J. Liu, M. Wu, X. Li, D. Wu, H. Wang et al., Amide-functional, Li3N/LiF-rich heterostructured electrode electrolyte interphases for 4.6 V Li||LiCoO2 batteries. Adv. Energy Mater. 13(15), 2300084 (2023). https://doi.org/10.1002/aenm.202300084