High-Efficiency Perovskite/Silicon Tandem Solar Cells Based on Wide-Bandgap Perovskite Solar Cells with Unprecedented Fill Factor
Corresponding Author: Heping Shen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 122
Abstract
Recent progress in inverted perovskite solar cells (iPSCs) highlights the critical role of interface engineering between the charge transport layer and perovskite. Self-assembled monolayers (SAM) on transparent conductive oxide electrodes serve effectively as hole transport layers, though challenges such as energy mismatches and surface inhomogeneities remain. Here, a blended self-assembled monolayer of (2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz) and (4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl)phosphonic acid (Me-4PACz) is developed, offering improved surface potential uniformity and interfacial energy alignment compared to individual SAMs. Interactions between the SAMs and ionic species are investigated with simulation analysis conducted, revealing the elimination of interfacial energy barriers through precise energy-level tuning. This strategy enables wide-bandgap (1.67 eV) perovskite solar cells with inverted structures with over 24% efficiency, an open-circuit voltage (Voc) of 1.268 V, and a certified fill factor (FF) of 86.8%, leading to a certified efficiency of 23.42%. The approach also enables high-efficiency semi-transparent devices and a mechanically stacked four-terminal perovskite/silicon tandem solar cell reaching 30.97% efficiency.
Highlights:
1 By mixing 2PACz and Me-4PACz, an energetically homogeneous buried interface is formed, enabling preferential energy alignment at the hole transport layer/perovskite (1.67 eV) interface, which delivers a certified fill factor of 86.8% and a power conversion efficiency of 23.42%.
2 Simulations indicate that at lower interface defect densities (1 × 108–1 × 1011 cm−2), improvements in FF dominate the device performance, whereas at higher defect densities (1 × 1012–1 × 1013 cm−2), Voc is the key factor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 66). Prog. Photovolt. Res. Appl. 33(7), 795–810 (2025). https://doi.org/10.1002/pip.3919
- Best research-cell efficiencies chart (2024).
- International technology roadmap for photovoltaics (ITRPV)-15th-edition-2024-2 (2024).
- T. Niewelt, B. Steinhauser, A. Richter, B. Veith-Wolf, A. Fell et al., Reassessment of the intrinsic bulk recombination in crystalline silicon. Sol. Energy Mater. Sol. Cells 235, 111467 (2022). https://doi.org/10.1016/j.solmat.2021.111467
- L.E. Black, D.H. MacDonald, On the quantification of Auger recombination in crystalline silicon. Sol. Energy Mater. Sol. Cells 234, 111428 (2022). https://doi.org/10.1016/j.solmat.2021.111428
- E. Bellini. Csem, epfl achieve 31.25% efficiency for tandem perovskite-silicon solar cell. can be found under https://www.pv-magazine.com/2022/07/07/csem-epfl-achieve-31-25-efficiency-for-tandem-perovskite-silicon-solar-cell (2022).
- Y. Liu, Z. Zhang, T. Wu, W. Xiang, Z. Qin et al., Cost effectivities analysis of perovskite solar cells: will it outperform crystalline silicon ones? Nano-Micro Lett. 17(1), 219 (2025). https://doi.org/10.1007/s40820-025-01744-x
- N.L. Chang, J. Zheng, Y. Wu, H. Shen, F. Qi et al., A bottom-up cost analysis of silicon–perovskite tandem photovoltaics. Prog. Photovolt. Res. Appl. 29(3), 401–413 (2021). https://doi.org/10.1002/pip.3354
- Z. Wang, Z. Song, Y. Yan, S. Liu, D. Yang, Perovskite: a perfect top cell for tandem devices to break the S–Q limit. Adv. Sci. 6(7), 1801704 (2019). https://doi.org/10.1002/advs.201801704
- Z. Fang, B. Deng, Y. Jin, L. Yang, L. Chen et al., Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells. Nat. Commun. 15(1), 10554 (2024). https://doi.org/10.1038/s41467-024-54925-4
- E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623(7988), 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
- C. Duan, H. Gao, K. Xiao, V. Yeddu, B. Wang et al., Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10(3), 318–328 (2025). https://doi.org/10.1038/s41560-024-01672-x
- T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
- S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015
- E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa et al., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6(1), 613–617 (2015). https://doi.org/10.1039/c4sc03141e
- T. Li, J. Xu, R. Lin, S. Teale, H. Li et al., Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8(6), 610–620 (2023). https://doi.org/10.1038/s41560-023-01250-7
- X. Jiang, S. Qin, L. Meng, G. He, J. Zhang et al., Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature 635(8040), 860–866 (2024). https://doi.org/10.1038/s41586-024-08160-y
- J. Peng, Y. Wu, W. Ye, D.A. Jacobs, H. Shen et al., Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 10(8), 1792–1800 (2017). https://doi.org/10.1039/c7ee01096f
- W. Zhang, X. Guo, Z. Cui, H. Yuan, Y. Li et al., Strategies for improving efficiency and stability of inverted perovskite solar cells. Adv. Mater. 36(37), 2311025 (2024). https://doi.org/10.1002/adma.202311025
- X. Shi, K. Xu, Y. He, Z. Peng, X. Meng et al., Strategies for enhancing energy-level matching in perovskite solar cells: an energy flow perspective. Nano-Micro Lett. 17(1), 313 (2025). https://doi.org/10.1007/s40820-025-01815-z
- Y. Shi, X. Cheng, Y. Wang, W. Li, W. Shang et al., Atomically dispersed metal atoms: minimizing interfacial charge transport barrier for efficient carbon-based perovskite solar cells. Nano-Micro Lett. 17(1), 125 (2025). https://doi.org/10.1007/s40820-024-01639-3
- M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/c9ee02020a
- H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
- M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10(1), 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- C. Fei, N. Li, M. Wang, X. Wang, H. Gu et al., Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380(6647), 823–829 (2023). https://doi.org/10.1126/science.ade9463
- L.-C. Chang, A. Dinh Bui, K. Huang, F. Kremer, F. Brink et al., Enhanced efficiency and stability for the inverted high-bandgap perovskite solar cell via bottom passivation strategy. Sol. RRL 8(19), 2400391 (2024). https://doi.org/10.1002/solr.202400391
- A.-N. Cho, N.-G. Park, Impact of interfacial layers in perovskite solar cells. Chemsuschem 10(19), 3687–3704 (2017). https://doi.org/10.1002/cssc.201701095
- P.H. Mutin, G. Guerrero, A. Vioux, Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 15(35–36), 3761 (2005). https://doi.org/10.1039/b505422b
- H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
- S.M. Park, M. Wei, N. Lempesis, W. Yu, T. Hossain et al., Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624(7991), 289–294 (2023). https://doi.org/10.1038/s41586-023-06745-7
- A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620(7974), 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
- H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613(7945), 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
- I. Lange, S. Reiter, M. Pätzel, A. Zykov, A. Nefedov et al., Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24(44), 7014–7024 (2014). https://doi.org/10.1002/adfm.201401493
- T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7(14), 1700228 (2017). https://doi.org/10.1002/aenm.201700228
- Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan et al., Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ. Sci. 10(11), 2472–2479 (2017). https://doi.org/10.1039/C7EE02288C
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- X. Deng, F. Qi, F. Li, S. Wu, F.R. Lin et al., Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61(30), e202203088 (2022). https://doi.org/10.1002/anie.202203088
- P. Han, Y. Zhang, Recent advances in carbazole-based self-assembled monolayer for solution-processed optoelectronic devices. Adv. Mater. 36(33), e2405630 (2024). https://doi.org/10.1002/adma.202405630
- H. Zhou, W. Wang, Y. Duan, R. Sun, Y. Li et al., Glycol monomethyl ether-substituted carbazolyl hole-transporting material for stable inverted perovskite solar cells with efficiency of 25.52%. Angew. Chem. Int. Ed. 63(33), e202403068 (2024). https://doi.org/10.1002/anie.202403068
- I. Levine, A. Al-Ashouri, A. Musiienko, H. Hempel, A. Magomedov et al., Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5(11), 2915–2933 (2021). https://doi.org/10.1016/j.joule.2021.07.016
- V. Lami, A. Weu, J. Zhang, Y. Chen, Z. Fei et al., Visualizing the vertical energetic landscape in organic photovoltaics. Joule 3(10), 2513–2534 (2019). https://doi.org/10.1016/j.joule.2019.06.018
- T. Minemoto, M. Murata, Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr. Appl. Phys. 14(11), 1428–1433 (2014). https://doi.org/10.1016/j.cap.2014.08.002
- O.J. Sandberg, J. Kurpiers, M. Stolterfoht, D. Neher, P. Meredith et al., On the question of the need for a built-In potential in perovskite solar cells. Adv. Mater. Interfaces 7(10), 2000041 (2020). https://doi.org/10.1002/admi.202000041
- K. Wei, L. Yang, J. Deng, Z. Luo, X. Zhang et al., Facile exfoliation of the perovskite thin film for visualizing the buried interfaces in perovskite solar cells. ACS Appl. Energy Mater. 5(6), 7458–7465 (2022). https://doi.org/10.1021/acsaem.2c00948
- J. Zhang, B. Yu, Y. Sun, H. Yu, Minimized energy loss at the buried interface of p-i-n perovskite solar cells via accelerating charge transfer and forming p–n homojunction. Adv. Energy Mater. 13(19), 2300382 (2023). https://doi.org/10.1002/aenm.202300382
- Y. Guo, S. Du, W. Chen, H. Zhou, G. Chen et al., Contact potential homogenization via buried interface engineering enables high-performance wide-bandgap perovskite photovoltaics. Adv. Funct. Mater. 35(29), 2500168 (2025). https://doi.org/10.1002/adfm.202500168
- X. Jia, Z. Chang, K. Wang, J. Li, S. Wang et al., Hydroxyl-functionalized ultrathin NiOx interlayer for minimized energy loss and enhanced interface stability in perovskite photovoltaics. J. Mater. Chem. A 13(36), 29983–29993 (2025). https://doi.org/10.1039/D5TA05079K
- Y. Wang, S. Akel, B. Klingebiel, T. Kirchartz, Hole transporting bilayers for efficient micrometer-thick perovskite solar cells. Adv. Energy Mater. 14(5), 2302614 (2024). https://doi.org/10.1002/aenm.202302614
- Q. Cheng, W. Chen, Y. Li, Y. Li, Recent progress in dopant-free and green solvent-processable organic hole transport materials for efficient and stable perovskite solar cells. Adv. Sci. 11(17), 2307152 (2024). https://doi.org/10.1002/advs.202307152
- K. Hossain, A. Kulkarni, U. Bothra, B. Klingebiel, T. Kirchartz et al., Resolving the hydrophobicity of the me-4PACz hole transport layer for inverted perovskite solar cells with efficiency > 20%. ACS Energy Lett. 8(9), 3860–3867 (2023). https://doi.org/10.1021/acsenergylett.3c01385
- A. Farag, T. Feeney, I.M. Hossain, F. Schackmar, P. Fassl et al., Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p-i-n perovskite solar cells. Adv. Energy Mater. 13(8), 2203982 (2023). https://doi.org/10.1002/aenm.202203982
- D. Vidyasagar, Y. Yun, J.Y. Cho, H. Lee, K.W. Kim et al., Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells. J. Energy Chem. 88, 317–326 (2024). https://doi.org/10.1016/j.jechem.2023.09.023
- H. Hu, D.B. Ritzer, A. Diercks, Y. Li, R. Singh et al., Void-free buried interface for scalable processing of p-i-n-based FAPbI3 perovskite solar modules. Joule 7(7), 1574–1592 (2023). https://doi.org/10.1016/j.joule.2023.05.017
- S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373(6557), 902–907 (2021). https://doi.org/10.1126/science.abi6323
- S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- W. Lee, Y.J. Yoo, J. Park, J.H. Ko, Y.J. Kim et al., Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows. Nat. Commun. 13(1), 1946 (2022). https://doi.org/10.1038/s41467-022-29602-z
- N. Cho, F. Li, B. Turedi, L. Sinatra, S.P. Sarmah et al., Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films. Nat. Commun. 7, 13407 (2016). https://doi.org/10.1038/ncomms13407
- B. Roose, K. Dey, Y.-H. Chiang, R.H. Friend, S.D. Stranks, Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells. J. Phys. Chem. Lett. 11(16), 6505–6512 (2020). https://doi.org/10.1021/acs.jpclett.0c01820
- T.J. Jacobsson, J.-P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
- L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136(35), 12205–12208 (2014). https://doi.org/10.1021/ja504632z
- J. Liu, E. Aydin, J. Yin, M. De Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5(12), 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
- M.F. Perutz, The role of aromatic rings as hydrogen-bond acceptors in molecular recognition. Philosophical Trans. R. Soc. London Ser. A: Phys. Eng. Sci. 345(1674), 105–112 (1993). https://doi.org/10.1098/rsta.1993.0122
- J. Ashenhurst, Activating and deactivating groups in electrophilic aromatic substitution (2024).
- E. Aydin, M. De Bastiani, S. De Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), 1900428 (2019). https://doi.org/10.1002/adma.201900428
- Z. Wang, Z. Han, X. Chu, H. Zhou, S. Yu et al., Regulation of wide bandgap perovskite by rubidium thiocyanate for efficient silicon/perovskite tandem solar cells. Adv. Mater. 36(50), e2407681 (2024). https://doi.org/10.1002/adma.202407681
- J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
- K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3(2), 428–435 (2018). https://doi.org/10.1021/acsenergylett.7b01255
- J. Wen, Y. Zhao, P. Wu, Y. Liu, X. Zheng et al., Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14(1), 7118 (2023). https://doi.org/10.1038/s41467-023-43016-5
- R.A. Belisle, K.A. Bush, L. Bertoluzzi, A. Gold-Parker, M.F. Toney et al., Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3(11), 2694–2700 (2018). https://doi.org/10.1021/acsenergylett.8b01562
- D. Luo, X. Li, A. Dumont, H. Yu, Z.-H. Lu, Recent progress on perovskite surfaces and interfaces in optoelectronic devices. Adv. Mater. 33(30), 2006004 (2021). https://doi.org/10.1002/adma.202006004
- Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y. Yang et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016). https://doi.org/10.1002/adma.201505002
- J. Chantana, Y. Kawano, T. Nishimura, A. Mavlonov, T. Minemoto, Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 210, 110502 (2020). https://doi.org/10.1016/j.solmat.2020.110502
- X. Wang, J. Li, R. Guo, X. Yin, R. Luo et al., Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18(12), 1269–1275 (2024). https://doi.org/10.1038/s41566-024-01531-x
- B. Zhang, M.-J. Zhang, S.-P. Pang, C.-S. Huang, Z.-M. Zhou et al., Carrier transport in CH3NH3PbI3 films with different thickness for perovskite solar cells. Adv. Mater. Interfaces 3(17), 1600327 (2016). https://doi.org/10.1002/admi.201600327
- W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015). https://doi.org/10.1063/1.4922150
- P. Caprioglio, M. Stolterfoht, C.M. Wolff, T. Unold, B. Rech et al., On the relation between the open-circuit voltage and quasi-Fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9(33), 1901631 (2019). https://doi.org/10.1002/aenm.201901631
- J. Cheng, H. Cao, S. Zhang, J. Shao, W. Yan et al., Enhanced electric field minimizing quasi-Fermi level splitting deficit for high-performance tin-lead perovskite solar cells. Adv. Mater. 36(48), 2410298 (2024). https://doi.org/10.1002/adma.202410298
- J. Warby, S. Shah, J. Thiesbrummel, E. Gutierrez-Partida, H. Lai et al., Mismatch of quasi–Fermi level splitting and Voc in perovskite solar cells. Adv. Energy Mater. 13(48), 2303135 (2023). https://doi.org/10.1002/aenm.202303135
- A.D. Bui, M.A. Mahmud, N. Mozaffari, R. Basnet, T. Duong et al., Contactless and spatially resolved determination of current–voltage curves in perovskite solar cells via photoluminescence. Sol. RRL 5(8), 2100348 (2021). https://doi.org/10.1002/solr.202100348
- X. Zhang, F. Liu, Y. Guan, Y. Zou, C. Wu et al., Reducing the V(oc) loss of hole transport layer-free carbon-based perovskite solar cells via dual interfacial passivation. Nano-Micro Lett. 17(1), 258 (2025). https://doi.org/10.1007/s40820-025-01775-4
- B. Dong, M. Wei, Y. Li, Y. Yang, W. Ma et al., Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nat. Energy 10(3), 342–353 (2025). https://doi.org/10.1038/s41560-024-01689-2
- J. Suo, B. Yang, D. Bogachuk, G. Boschloo, A. Hagfeldt, The dual use of SAM molecules for efficient and stable perovskite solar cells. Adv. Energy Mater. 15(2), 2400205 (2025). https://doi.org/10.1002/aenm.202400205
- G. Qu, L. Zhang, Y. Qiao, S. Gong, Y. Ding et al., Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells. Nat. Commun. 16(1), 86 (2025). https://doi.org/10.1038/s41467-024-55523-0
- L. Duan, S.P. Phang, D. Yan, J. Stuckelberger, D. Walter et al., Over 29%-efficient, stable n–i–p monolithic perovskite/silicon tandem solar cells based on double-sided poly-Si/SiO2 passivating contact silicon cells. J. Mater. Chem. A 12(31), 20006–20016 (2024). https://doi.org/10.1039/d4ta03396e
- K. Huang, L. Chang, Y. Hou, W. Ji, T. Trần-Phú et al., Universal strategy with structural and chemical crosslinking interface for efficient and stable perovskite solar cells. Adv. Energy Mater. 14(17), 2304073 (2024). https://doi.org/10.1002/aenm.202304073
- D. Glowienka, Y. Galagan, Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 34(2), 2105920 (2022). https://doi.org/10.1002/adma.202105920
- T. Kirchartz, J. Nelson, Meaning of reaction orders in polymer: fullerene solar cells. Phys. Rev. B 86(16), 165201 (2012). https://doi.org/10.1103/physrevb.86.165201
- A.D. Bui, D.-T. Nguyen, A. Fell, N. Mozaffari, V. Ahmad et al., Spatially resolved power conversion efficiency for perovskite solar cells via bias-dependent photoluminescence imaging. Cell Rep. Phys. Sci. 4(11), 101641 (2023). https://doi.org/10.1016/j.xcrp.2023.101641
- A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle et al., N-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017). https://doi.org/10.1016/j.solmat.2017.05.042
- T. Duong, T. Nguyen, K. Huang, H. Pham, S.G. Adhikari et al., Bulk incorporation with 4-methylphenethylammonium chloride for efficient and stable methylammonium-free perovskite and perovskite-silicon tandem solar cells. Adv. Energy Mater. 13(9), 2203607 (2023). https://doi.org/10.1002/aenm.202203607
- L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
- R. Sharma, A. Sharma, S. Agarwal, M.S. Dhaka, Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol. Energy 244, 516–535 (2022). https://doi.org/10.1016/j.solener.2022.08.001
- Y. Yang, J. You, Make perovskite solar cells stable. Nature 544(7649), 155–156 (2017). https://doi.org/10.1038/544155a
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
References
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 66). Prog. Photovolt. Res. Appl. 33(7), 795–810 (2025). https://doi.org/10.1002/pip.3919
Best research-cell efficiencies chart (2024).
International technology roadmap for photovoltaics (ITRPV)-15th-edition-2024-2 (2024).
T. Niewelt, B. Steinhauser, A. Richter, B. Veith-Wolf, A. Fell et al., Reassessment of the intrinsic bulk recombination in crystalline silicon. Sol. Energy Mater. Sol. Cells 235, 111467 (2022). https://doi.org/10.1016/j.solmat.2021.111467
L.E. Black, D.H. MacDonald, On the quantification of Auger recombination in crystalline silicon. Sol. Energy Mater. Sol. Cells 234, 111428 (2022). https://doi.org/10.1016/j.solmat.2021.111428
E. Bellini. Csem, epfl achieve 31.25% efficiency for tandem perovskite-silicon solar cell. can be found under https://www.pv-magazine.com/2022/07/07/csem-epfl-achieve-31-25-efficiency-for-tandem-perovskite-silicon-solar-cell (2022).
Y. Liu, Z. Zhang, T. Wu, W. Xiang, Z. Qin et al., Cost effectivities analysis of perovskite solar cells: will it outperform crystalline silicon ones? Nano-Micro Lett. 17(1), 219 (2025). https://doi.org/10.1007/s40820-025-01744-x
N.L. Chang, J. Zheng, Y. Wu, H. Shen, F. Qi et al., A bottom-up cost analysis of silicon–perovskite tandem photovoltaics. Prog. Photovolt. Res. Appl. 29(3), 401–413 (2021). https://doi.org/10.1002/pip.3354
Z. Wang, Z. Song, Y. Yan, S. Liu, D. Yang, Perovskite: a perfect top cell for tandem devices to break the S–Q limit. Adv. Sci. 6(7), 1801704 (2019). https://doi.org/10.1002/advs.201801704
Z. Fang, B. Deng, Y. Jin, L. Yang, L. Chen et al., Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells. Nat. Commun. 15(1), 10554 (2024). https://doi.org/10.1038/s41467-024-54925-4
E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623(7988), 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
C. Duan, H. Gao, K. Xiao, V. Yeddu, B. Wang et al., Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10(3), 318–328 (2025). https://doi.org/10.1038/s41560-024-01672-x
T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015
E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa et al., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6(1), 613–617 (2015). https://doi.org/10.1039/c4sc03141e
T. Li, J. Xu, R. Lin, S. Teale, H. Li et al., Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8(6), 610–620 (2023). https://doi.org/10.1038/s41560-023-01250-7
X. Jiang, S. Qin, L. Meng, G. He, J. Zhang et al., Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature 635(8040), 860–866 (2024). https://doi.org/10.1038/s41586-024-08160-y
J. Peng, Y. Wu, W. Ye, D.A. Jacobs, H. Shen et al., Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 10(8), 1792–1800 (2017). https://doi.org/10.1039/c7ee01096f
W. Zhang, X. Guo, Z. Cui, H. Yuan, Y. Li et al., Strategies for improving efficiency and stability of inverted perovskite solar cells. Adv. Mater. 36(37), 2311025 (2024). https://doi.org/10.1002/adma.202311025
X. Shi, K. Xu, Y. He, Z. Peng, X. Meng et al., Strategies for enhancing energy-level matching in perovskite solar cells: an energy flow perspective. Nano-Micro Lett. 17(1), 313 (2025). https://doi.org/10.1007/s40820-025-01815-z
Y. Shi, X. Cheng, Y. Wang, W. Li, W. Shang et al., Atomically dispersed metal atoms: minimizing interfacial charge transport barrier for efficient carbon-based perovskite solar cells. Nano-Micro Lett. 17(1), 125 (2025). https://doi.org/10.1007/s40820-024-01639-3
M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12(9), 2778–2788 (2019). https://doi.org/10.1039/c9ee02020a
H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou et al., Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384(6692), 189–193 (2024). https://doi.org/10.1126/science.adm9474
M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10(1), 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
C. Fei, N. Li, M. Wang, X. Wang, H. Gu et al., Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380(6647), 823–829 (2023). https://doi.org/10.1126/science.ade9463
L.-C. Chang, A. Dinh Bui, K. Huang, F. Kremer, F. Brink et al., Enhanced efficiency and stability for the inverted high-bandgap perovskite solar cell via bottom passivation strategy. Sol. RRL 8(19), 2400391 (2024). https://doi.org/10.1002/solr.202400391
A.-N. Cho, N.-G. Park, Impact of interfacial layers in perovskite solar cells. Chemsuschem 10(19), 3687–3704 (2017). https://doi.org/10.1002/cssc.201701095
P.H. Mutin, G. Guerrero, A. Vioux, Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 15(35–36), 3761 (2005). https://doi.org/10.1039/b505422b
H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383(6688), 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
S.M. Park, M. Wei, N. Lempesis, W. Yu, T. Hossain et al., Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624(7991), 289–294 (2023). https://doi.org/10.1038/s41586-023-06745-7
A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019). https://doi.org/10.1039/c9ee02268f
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620(7974), 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613(7945), 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
I. Lange, S. Reiter, M. Pätzel, A. Zykov, A. Nefedov et al., Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24(44), 7014–7024 (2014). https://doi.org/10.1002/adfm.201401493
T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7(14), 1700228 (2017). https://doi.org/10.1002/aenm.201700228
Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan et al., Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ. Sci. 10(11), 2472–2479 (2017). https://doi.org/10.1039/C7EE02288C
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
X. Deng, F. Qi, F. Li, S. Wu, F.R. Lin et al., Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability. Angew. Chem. Int. Ed. 61(30), e202203088 (2022). https://doi.org/10.1002/anie.202203088
P. Han, Y. Zhang, Recent advances in carbazole-based self-assembled monolayer for solution-processed optoelectronic devices. Adv. Mater. 36(33), e2405630 (2024). https://doi.org/10.1002/adma.202405630
H. Zhou, W. Wang, Y. Duan, R. Sun, Y. Li et al., Glycol monomethyl ether-substituted carbazolyl hole-transporting material for stable inverted perovskite solar cells with efficiency of 25.52%. Angew. Chem. Int. Ed. 63(33), e202403068 (2024). https://doi.org/10.1002/anie.202403068
I. Levine, A. Al-Ashouri, A. Musiienko, H. Hempel, A. Magomedov et al., Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5(11), 2915–2933 (2021). https://doi.org/10.1016/j.joule.2021.07.016
V. Lami, A. Weu, J. Zhang, Y. Chen, Z. Fei et al., Visualizing the vertical energetic landscape in organic photovoltaics. Joule 3(10), 2513–2534 (2019). https://doi.org/10.1016/j.joule.2019.06.018
T. Minemoto, M. Murata, Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr. Appl. Phys. 14(11), 1428–1433 (2014). https://doi.org/10.1016/j.cap.2014.08.002
O.J. Sandberg, J. Kurpiers, M. Stolterfoht, D. Neher, P. Meredith et al., On the question of the need for a built-In potential in perovskite solar cells. Adv. Mater. Interfaces 7(10), 2000041 (2020). https://doi.org/10.1002/admi.202000041
K. Wei, L. Yang, J. Deng, Z. Luo, X. Zhang et al., Facile exfoliation of the perovskite thin film for visualizing the buried interfaces in perovskite solar cells. ACS Appl. Energy Mater. 5(6), 7458–7465 (2022). https://doi.org/10.1021/acsaem.2c00948
J. Zhang, B. Yu, Y. Sun, H. Yu, Minimized energy loss at the buried interface of p-i-n perovskite solar cells via accelerating charge transfer and forming p–n homojunction. Adv. Energy Mater. 13(19), 2300382 (2023). https://doi.org/10.1002/aenm.202300382
Y. Guo, S. Du, W. Chen, H. Zhou, G. Chen et al., Contact potential homogenization via buried interface engineering enables high-performance wide-bandgap perovskite photovoltaics. Adv. Funct. Mater. 35(29), 2500168 (2025). https://doi.org/10.1002/adfm.202500168
X. Jia, Z. Chang, K. Wang, J. Li, S. Wang et al., Hydroxyl-functionalized ultrathin NiOx interlayer for minimized energy loss and enhanced interface stability in perovskite photovoltaics. J. Mater. Chem. A 13(36), 29983–29993 (2025). https://doi.org/10.1039/D5TA05079K
Y. Wang, S. Akel, B. Klingebiel, T. Kirchartz, Hole transporting bilayers for efficient micrometer-thick perovskite solar cells. Adv. Energy Mater. 14(5), 2302614 (2024). https://doi.org/10.1002/aenm.202302614
Q. Cheng, W. Chen, Y. Li, Y. Li, Recent progress in dopant-free and green solvent-processable organic hole transport materials for efficient and stable perovskite solar cells. Adv. Sci. 11(17), 2307152 (2024). https://doi.org/10.1002/advs.202307152
K. Hossain, A. Kulkarni, U. Bothra, B. Klingebiel, T. Kirchartz et al., Resolving the hydrophobicity of the me-4PACz hole transport layer for inverted perovskite solar cells with efficiency > 20%. ACS Energy Lett. 8(9), 3860–3867 (2023). https://doi.org/10.1021/acsenergylett.3c01385
A. Farag, T. Feeney, I.M. Hossain, F. Schackmar, P. Fassl et al., Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p-i-n perovskite solar cells. Adv. Energy Mater. 13(8), 2203982 (2023). https://doi.org/10.1002/aenm.202203982
D. Vidyasagar, Y. Yun, J.Y. Cho, H. Lee, K.W. Kim et al., Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells. J. Energy Chem. 88, 317–326 (2024). https://doi.org/10.1016/j.jechem.2023.09.023
H. Hu, D.B. Ritzer, A. Diercks, Y. Li, R. Singh et al., Void-free buried interface for scalable processing of p-i-n-based FAPbI3 perovskite solar modules. Joule 7(7), 1574–1592 (2023). https://doi.org/10.1016/j.joule.2023.05.017
S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373(6557), 902–907 (2021). https://doi.org/10.1126/science.abi6323
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
W. Lee, Y.J. Yoo, J. Park, J.H. Ko, Y.J. Kim et al., Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows. Nat. Commun. 13(1), 1946 (2022). https://doi.org/10.1038/s41467-022-29602-z
N. Cho, F. Li, B. Turedi, L. Sinatra, S.P. Sarmah et al., Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films. Nat. Commun. 7, 13407 (2016). https://doi.org/10.1038/ncomms13407
B. Roose, K. Dey, Y.-H. Chiang, R.H. Friend, S.D. Stranks, Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells. J. Phys. Chem. Lett. 11(16), 6505–6512 (2020). https://doi.org/10.1021/acs.jpclett.0c01820
T.J. Jacobsson, J.-P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks et al., Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331–10343 (2016). https://doi.org/10.1021/jacs.6b06320
L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136(35), 12205–12208 (2014). https://doi.org/10.1021/ja504632z
J. Liu, E. Aydin, J. Yin, M. De Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5(12), 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
M.F. Perutz, The role of aromatic rings as hydrogen-bond acceptors in molecular recognition. Philosophical Trans. R. Soc. London Ser. A: Phys. Eng. Sci. 345(1674), 105–112 (1993). https://doi.org/10.1098/rsta.1993.0122
J. Ashenhurst, Activating and deactivating groups in electrophilic aromatic substitution (2024).
E. Aydin, M. De Bastiani, S. De Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), 1900428 (2019). https://doi.org/10.1002/adma.201900428
Z. Wang, Z. Han, X. Chu, H. Zhou, S. Yu et al., Regulation of wide bandgap perovskite by rubidium thiocyanate for efficient silicon/perovskite tandem solar cells. Adv. Mater. 36(50), e2407681 (2024). https://doi.org/10.1002/adma.202407681
J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3(2), 428–435 (2018). https://doi.org/10.1021/acsenergylett.7b01255
J. Wen, Y. Zhao, P. Wu, Y. Liu, X. Zheng et al., Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14(1), 7118 (2023). https://doi.org/10.1038/s41467-023-43016-5
R.A. Belisle, K.A. Bush, L. Bertoluzzi, A. Gold-Parker, M.F. Toney et al., Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3(11), 2694–2700 (2018). https://doi.org/10.1021/acsenergylett.8b01562
D. Luo, X. Li, A. Dumont, H. Yu, Z.-H. Lu, Recent progress on perovskite surfaces and interfaces in optoelectronic devices. Adv. Mater. 33(30), 2006004 (2021). https://doi.org/10.1002/adma.202006004
Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y. Yang et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016). https://doi.org/10.1002/adma.201505002
J. Chantana, Y. Kawano, T. Nishimura, A. Mavlonov, T. Minemoto, Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 210, 110502 (2020). https://doi.org/10.1016/j.solmat.2020.110502
X. Wang, J. Li, R. Guo, X. Yin, R. Luo et al., Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photonics 18(12), 1269–1275 (2024). https://doi.org/10.1038/s41566-024-01531-x
B. Zhang, M.-J. Zhang, S.-P. Pang, C.-S. Huang, Z.-M. Zhou et al., Carrier transport in CH3NH3PbI3 films with different thickness for perovskite solar cells. Adv. Mater. Interfaces 3(17), 1600327 (2016). https://doi.org/10.1002/admi.201600327
W.E.I. Sha, X. Ren, L. Chen, W.C.H. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015). https://doi.org/10.1063/1.4922150
P. Caprioglio, M. Stolterfoht, C.M. Wolff, T. Unold, B. Rech et al., On the relation between the open-circuit voltage and quasi-Fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9(33), 1901631 (2019). https://doi.org/10.1002/aenm.201901631
J. Cheng, H. Cao, S. Zhang, J. Shao, W. Yan et al., Enhanced electric field minimizing quasi-Fermi level splitting deficit for high-performance tin-lead perovskite solar cells. Adv. Mater. 36(48), 2410298 (2024). https://doi.org/10.1002/adma.202410298
J. Warby, S. Shah, J. Thiesbrummel, E. Gutierrez-Partida, H. Lai et al., Mismatch of quasi–Fermi level splitting and Voc in perovskite solar cells. Adv. Energy Mater. 13(48), 2303135 (2023). https://doi.org/10.1002/aenm.202303135
A.D. Bui, M.A. Mahmud, N. Mozaffari, R. Basnet, T. Duong et al., Contactless and spatially resolved determination of current–voltage curves in perovskite solar cells via photoluminescence. Sol. RRL 5(8), 2100348 (2021). https://doi.org/10.1002/solr.202100348
X. Zhang, F. Liu, Y. Guan, Y. Zou, C. Wu et al., Reducing the V(oc) loss of hole transport layer-free carbon-based perovskite solar cells via dual interfacial passivation. Nano-Micro Lett. 17(1), 258 (2025). https://doi.org/10.1007/s40820-025-01775-4
B. Dong, M. Wei, Y. Li, Y. Yang, W. Ma et al., Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses. Nat. Energy 10(3), 342–353 (2025). https://doi.org/10.1038/s41560-024-01689-2
J. Suo, B. Yang, D. Bogachuk, G. Boschloo, A. Hagfeldt, The dual use of SAM molecules for efficient and stable perovskite solar cells. Adv. Energy Mater. 15(2), 2400205 (2025). https://doi.org/10.1002/aenm.202400205
G. Qu, L. Zhang, Y. Qiao, S. Gong, Y. Ding et al., Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells. Nat. Commun. 16(1), 86 (2025). https://doi.org/10.1038/s41467-024-55523-0
L. Duan, S.P. Phang, D. Yan, J. Stuckelberger, D. Walter et al., Over 29%-efficient, stable n–i–p monolithic perovskite/silicon tandem solar cells based on double-sided poly-Si/SiO2 passivating contact silicon cells. J. Mater. Chem. A 12(31), 20006–20016 (2024). https://doi.org/10.1039/d4ta03396e
K. Huang, L. Chang, Y. Hou, W. Ji, T. Trần-Phú et al., Universal strategy with structural and chemical crosslinking interface for efficient and stable perovskite solar cells. Adv. Energy Mater. 14(17), 2304073 (2024). https://doi.org/10.1002/aenm.202304073
D. Glowienka, Y. Galagan, Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 34(2), 2105920 (2022). https://doi.org/10.1002/adma.202105920
T. Kirchartz, J. Nelson, Meaning of reaction orders in polymer: fullerene solar cells. Phys. Rev. B 86(16), 165201 (2012). https://doi.org/10.1103/physrevb.86.165201
A.D. Bui, D.-T. Nguyen, A. Fell, N. Mozaffari, V. Ahmad et al., Spatially resolved power conversion efficiency for perovskite solar cells via bias-dependent photoluminescence imaging. Cell Rep. Phys. Sci. 4(11), 101641 (2023). https://doi.org/10.1016/j.xcrp.2023.101641
A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle et al., N-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017). https://doi.org/10.1016/j.solmat.2017.05.042
T. Duong, T. Nguyen, K. Huang, H. Pham, S.G. Adhikari et al., Bulk incorporation with 4-methylphenethylammonium chloride for efficient and stable methylammonium-free perovskite and perovskite-silicon tandem solar cells. Adv. Energy Mater. 13(9), 2203607 (2023). https://doi.org/10.1002/aenm.202203607
L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
R. Sharma, A. Sharma, S. Agarwal, M.S. Dhaka, Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol. Energy 244, 516–535 (2022). https://doi.org/10.1016/j.solener.2022.08.001
Y. Yang, J. You, Make perovskite solar cells stable. Nature 544(7649), 155–156 (2017). https://doi.org/10.1038/544155a
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0