Mechano-Electrochemical Synergy in Cellulose@MOF Scaffold-Based Asymmetric Electrolyte for Stable Solid-State Lithium Metal Batteries
Corresponding Author: Zheng Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 208
Abstract
The application of polymer electrolytes is expected to revitalize solid-state lithium metal batteries (SSLMBs) with high energy density and enhanced safety. However, practical deployment faces challenges from inadequate mechanical properties of electrolyte and unstable interfaces in high-voltage SSLMBs. Herein, we design an asymmetric composite solid-state electrolyte (ACSE) composed of a cellulose framework in situ self-assembled with zeolitic imidazolate framework nanosheets (CP@MOF) embedded in a polymer matrix. The CP@MOF network provides the electrolyte with an elastic modulus of 1.19 GPa, effectively resisting Li dendrite penetration. Furthermore, theoretical calculations guided the compositional design of ACSE to address asynchronous interfacial requirements at cathode/electrolyte and anode/electrolyte interfaces, facilitating stable interphase formation and thus ensuring prolonged cycling of SSLMBs. Consequently, Li symmetric cells achieve extended cycling stability (> 5000 h) with minimal polarization. The NCM811|Li full cell maintains 84.9% capacity retention after 350 cycles. Notably, assembled NCM811 pouch cells deliver practical energy densities of 337.9 Wh kg−1 and 711.7 Wh L−1, demonstrating exceptional application potential. This work provides novel insights into the application of ACSEs for high-energy–density SSLMBs.
Highlights:
1 A structurally simple asymmetric solid-state electrolyte successfully stabilizes the interface between lithium metal and high-voltage cathodes in solid-state lithium metal batteries.
2 Environmentally friendly cellulose provides high mechanical support, while layered self-assembled metal–organic frameworks restrict TFSI⁻, efficiently promoting Li⁺ transport.
3 The assembled pouch cell exhibited a high gravimetric/volume energy density of 337.9 Wh kg−1/711.7 Wh L−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Luo, Z. Rao, X. Yang, C. Wang, X. Sun et al., Safety concerns in solid-state lithium batteries: from materials to devices. Energy Environ. Sci. 17(20), 7543–7565 (2024). https://doi.org/10.1039/d4ee02358g
- H. Xie, J. Feng, H. Zhao, Lithium metal batteries with all-solid/full-liquid configurations. Energy Storage Mater. 61, 102918 (2023). https://doi.org/10.1016/j.ensm.2023.102918
- R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
- T. Jin, G. Singer, K. Liang, Y. Yang, Structural batteries: advances, challenges and perspectives. Mater. Today 62, 151–167 (2023). https://doi.org/10.1016/j.mattod.2022.12.001
- Y. Li, Z. Zhang, W. Guo, M. Liu, J. Xu et al., Solvent-activated valence-adaptive ruthenium catalysis strategy for integrated cleavage–acetalization of lignin ethers to aromatic acetals. ACS Sustain. Chem. Eng. 13(45), 19456–19463 (2025). https://doi.org/10.1021/acssuschemeng.5c09543
- X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
- X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
- S. Zhang, F. Sun, X. Du, X. Zhang, L. Huang et al., In situ-polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries. Energy Environ. Sci. 16(6), 2591–2602 (2023). https://doi.org/10.1039/d3ee00558e
- H. Wang, J. Song, K. Zhang, Q. Fang, Y. Zuo et al., A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy Environ. Sci. 15(12), 5149–5158 (2022). https://doi.org/10.1039/d2ee02904a
- N. Meng, Y. Ye, Z. Yang, H. Li, F. Lian, Developing single-ion conductive polymer electrolytes for high-energy-density solid state batteries. Adv. Funct. Mater. 33(43), 2305072 (2023). https://doi.org/10.1002/adfm.202305072
- Z. Yang, Y. Ye, N. Meng, F. Lian, Adaptive 3D cross-linked single-ion conducting polymer electrolytes enable powerful interface for solid state batteries. Angew. Chem. Int. Ed. 64(40), e202505232 (2025). https://doi.org/10.1002/anie.202505232
- Y. Fu, K. Yang, S. Xue, W. Li, S. Chen et al., Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries. Adv. Funct. Mater. 33(10), 2210845 (2023). https://doi.org/10.1002/adfm.202210845
- Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
- A. Du, H. Lu, S. Liu, S. Chen, Z. Chen et al., Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries. Adv. Energy Mater. 14(31), 2400808 (2024). https://doi.org/10.1002/aenm.202400808
- X. Da, J. Chen, Y. Qin, J. Zhao, X. Jia et al., CO2-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries. Adv. Energy Mater. 14(11), 2303527 (2024). https://doi.org/10.1002/aenm.202303527
- C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
- J. Li, Z. Hu, S. Zhang, H. Zhang, S. Guo et al., Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes. Nat. Sustain. 7(11), 1481–1491 (2024). https://doi.org/10.1038/s41893-024-01414-7
- Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16(1), 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
- T. Meng, R. Liu, J. Cai, X. Cheng, Z. He et al., Breaking structural symmetry of atomically dispersed co sites for boosting oxygen reduction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202522046
- Z. Wang, Y.-H. Lee, S.-W. Kim, J.-Y. Seo, S.-Y. Lee et al., Why cellulose-based electrochemical energy storage devices? Adv. Mater. 33(28), e2000892 (2021). https://doi.org/10.1002/adma.202000892
- D. Wang, H. Xie, Q. Liu, K. Mu, Z. Song et al., Low-cost, high-strength cellulose-based quasi-solid polymer electrolyte for solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 62(25), e202302767 (2023). https://doi.org/10.1002/anie.202302767
- S. Duan, L. Qian, Y. Zheng, Y. Zhu, X. Liu et al., Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries. Adv. Mater. 36(32), 2314120 (2024). https://doi.org/10.1002/adma.202314120
- X. Zhang, Q. Su, G. Du, B. Xu, S. Wang et al., Stabilizing solid-state lithium metal batteries through in situ generated Janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes. Angew. Chem. Int. Ed. 62(39), e202304947 (2023). https://doi.org/10.1002/anie.202304947
- F. Yu, Y. Mu, M. Han, J. Liu, K. Zheng et al., Electrochemically stable and ultrathin polymer-based solid electrolytes for dendrite-free all-solid-state lithium-metal batteries. Mater. Futur. 4(1), 015101 (2025). https://doi.org/10.1088/2752-5724/ada0cc
- Z. Zhang, W. Fan, K. Cui, J. Gou, Y. Huang, Design of ultrathin asymmetric composite electrolytes for interfacial stable solid-state lithium-metal batteries. ACS Nano 18(27), 17890–17900 (2024). https://doi.org/10.1021/acsnano.4c04429
- X. He, H. Qin, J. Liu, J. Wang, Z. Xiao et al., Molecular interlocking multidimensional modulations of cathode-electrolyte interface for constructing high energy density quasi-solid-state batteries. Adv. Energy Mater. 15(33), 2502363 (2025). https://doi.org/10.1002/aenm.202502363
- C. Ma, D. Hou, J. Jiang, Y. Fan, X. Li et al., Elucidating the synergic effect in nanoscale MoS2/TiO2 heterointerface for Na-ion storage. Adv. Sci. 9(35), 2204837 (2022). https://doi.org/10.1002/advs.202204837
- Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
- M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13(12), 2203640 (2023). https://doi.org/10.1002/aenm.202203640
- Q. Lv, Y. Jing, B. Wang, B. Wu, S. Wang et al., Multilayer asymmetric solid polymer electrolyte with modified interface for high-voltage solid-state Li metal batteries. Energy Storage Mater. 65, 103122 (2024). https://doi.org/10.1016/j.ensm.2023.103122
- X. Song, K. Ma, J. Wang, H. Wang, H. Xie et al., Three-dimensional metal–organic framework@Cellulose skeleton-reinforced composite polymer electrolyte for all-solid-state lithium metal battery. ACS Nano 18(19), 12311–12324 (2024). https://doi.org/10.1021/acsnano.4c01257
- J. Tian, J. Ji, Y. Zhu, Y. He, H. Li et al., Phenylboronic acid functionalized calix [4] pyrrole-based solid-state supramolecular electrolyte. Adv. Mater. 36(7), e2308507 (2024). https://doi.org/10.1002/adma.202308507
- Z. Wang, Y. Hou, S. Li, Z. Xu, X. Zhu et al., Quasi-solid composite polymer electrolyte-based structural batteries with high ionic conductivity and excellent mechanical properties. Small Struct. 5(8), 2400050 (2024). https://doi.org/10.1002/sstr.202400050
- S. Yin, Y. Huang, Y. Liu, L. Cheng, M. Chen et al., Advanced composite solid electrolyte architecture constructed with amino-modified cellulose and carbon nitride via biosynthetic avenue. Adv. Funct. Mater. 34(24), 2314976 (2024). https://doi.org/10.1002/adfm.202314976
- Y.-Q. Mao, G.-H. Dong, W.-B. Zhu, Y.-Q. Li, P. Huang et al., Novel sandwich structured glass fiber cloth/Poly(ethylene oxide)-MXene composite electrolyte. Nano Mater. Sci. 6(1), 60–67 (2024). https://doi.org/10.1016/j.nanoms.2023.01.001
- X. Wen, Q. Zeng, J. Guan, W. Wen, P. Chen et al., 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries. J. Mater. Chem. A 10(2), 707–718 (2022). https://doi.org/10.1039/d1ta07252h
- Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu et al., A metal–organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30(2), 1704436 (2018). https://doi.org/10.1002/adma.201704436
- Y. Zhang, J. Huang, H. Liu, W. Kou, Y. Dai et al., Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 13(23), 2300156 (2023). https://doi.org/10.1002/aenm.202300156
- L. Du, B. Zhang, W. Deng, Y. Cheng, L. Xu et al., Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength. Adv. Energy Mater. 12(24), 2200501 (2022). https://doi.org/10.1002/aenm.202200501
- Y. Zheng, N. Yang, R. Gao, Z. Li, H. Dou et al., “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 34(44), 2203417 (2022). https://doi.org/10.1002/adma.202203417
- P. Pan, M. Zhang, Z. Cheng, L. Jiang, J. Mao et al., Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable all-solid-state lithium metal batteries. Energy Storage Mater. 47, 279–287 (2022). https://doi.org/10.1016/j.ensm.2022.02.018
- A. Hu, Z. Sun, Q. Hou, J. Duan, C. Li et al., Regulating lithium plating/stripping behavior by a composite polymer electrolyte endowed with designated ion channels. Small 18(52), 2205571 (2022). https://doi.org/10.1002/smll.202205571
- H. Lian, R. Momen, Y. Xiao, B. Song, X. Hu et al., High ionic conductivity motivated by multiple ion-transport channels in 2D MOF-based lithium solid state battery. Adv. Funct. Mater. 33(49), 2306060 (2023). https://doi.org/10.1002/adfm.202306060
- G. Wang, P. He, L.-Z. Fan, Asymmetric polymer electrolyte constructed by metal–organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 31(3), 2007198 (2021). https://doi.org/10.1002/adfm.202007198
- C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 19(21), 2300066 (2023). https://doi.org/10.1002/smll.202300066
- L. Cui, K. Zhu, R. Li, C. Chang, L. Wu et al., The Cambrian microfossil Qingjiangonema reveals the co-evolution of sulfate-reducing bacteria and the oxygenation of Earth’s surface. Sci. Bull. 69(10), 1486–1494 (2024). https://doi.org/10.1016/j.scib.2024.03.001
- D. Zhang, X. Meng, W. Zhang, J. Mo, Q. Zhao et al., A thin and ultrahigh-ionic-conductivity composite electrolyte with 3D aramid nanofiber networks toward ambient-temperature lithium metal batteries. Adv. Energy Mater. 15(9), 2403565 (2025). https://doi.org/10.1002/aenm.202403565
- S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13(44), 2302711 (2023). https://doi.org/10.1002/aenm.202302711
- J. Song, Y. Xu, Y. Zhou, P. Wang, H. Feng et al., Cellulose-assisted vertically heterostructured PEO-based solid electrolytes mitigating Li-succinonitrile corrosion for lithium metal batteries. ACS Appl. Mater. Interfaces 15(17), 20897–20908 (2023). https://doi.org/10.1021/acsami.2c22562
- X. Yi, Y. Yang, K. Xiao, S. Zhang, B. Wang et al., Achieving balanced performance and safety for manufacturing all-solid-state lithium metal batteries by polymer base adjustment. Adv. Energy Mater. 15(10), 2404973 (2025). https://doi.org/10.1002/aenm.202404973
- X.-L. Zhang, F.-Y. Shen, X. Long, S. Zheng, Z. Ruan et al., Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Mater. 52, 201–209 (2022). https://doi.org/10.1016/j.ensm.2022.07.045
- C. Zhang, H. Zheng, L. Lin, J. Wen, S. Zhang et al., Deep eutectic solvent-based solid polymer electrolytes for high-voltage and high-safety lithium metal batteries. Adv. Energy Mater. 14(35), 2401324 (2024). https://doi.org/10.1002/aenm.202401324
- S. Liu, Z. Ni, Z. Wang, J. Liu, H. Zhang et al., Synergistic ionic-molecular coordination engineering in weakly solvating ether electrolytes for stable high-voltage lithium metal batteries. Energy Storage Mater. 81, 104467 (2025). https://doi.org/10.1016/j.ensm.2025.104467
References
Y. Luo, Z. Rao, X. Yang, C. Wang, X. Sun et al., Safety concerns in solid-state lithium batteries: from materials to devices. Energy Environ. Sci. 17(20), 7543–7565 (2024). https://doi.org/10.1039/d4ee02358g
H. Xie, J. Feng, H. Zhao, Lithium metal batteries with all-solid/full-liquid configurations. Energy Storage Mater. 61, 102918 (2023). https://doi.org/10.1016/j.ensm.2023.102918
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
T. Jin, G. Singer, K. Liang, Y. Yang, Structural batteries: advances, challenges and perspectives. Mater. Today 62, 151–167 (2023). https://doi.org/10.1016/j.mattod.2022.12.001
Y. Li, Z. Zhang, W. Guo, M. Liu, J. Xu et al., Solvent-activated valence-adaptive ruthenium catalysis strategy for integrated cleavage–acetalization of lignin ethers to aromatic acetals. ACS Sustain. Chem. Eng. 13(45), 19456–19463 (2025). https://doi.org/10.1021/acssuschemeng.5c09543
X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13(38), 2301746 (2023). https://doi.org/10.1002/aenm.202301746
S. Zhang, F. Sun, X. Du, X. Zhang, L. Huang et al., In situ-polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries. Energy Environ. Sci. 16(6), 2591–2602 (2023). https://doi.org/10.1039/d3ee00558e
H. Wang, J. Song, K. Zhang, Q. Fang, Y. Zuo et al., A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy Environ. Sci. 15(12), 5149–5158 (2022). https://doi.org/10.1039/d2ee02904a
N. Meng, Y. Ye, Z. Yang, H. Li, F. Lian, Developing single-ion conductive polymer electrolytes for high-energy-density solid state batteries. Adv. Funct. Mater. 33(43), 2305072 (2023). https://doi.org/10.1002/adfm.202305072
Z. Yang, Y. Ye, N. Meng, F. Lian, Adaptive 3D cross-linked single-ion conducting polymer electrolytes enable powerful interface for solid state batteries. Angew. Chem. Int. Ed. 64(40), e202505232 (2025). https://doi.org/10.1002/anie.202505232
Y. Fu, K. Yang, S. Xue, W. Li, S. Chen et al., Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries. Adv. Funct. Mater. 33(10), 2210845 (2023). https://doi.org/10.1002/adfm.202210845
Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15(1), 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
A. Du, H. Lu, S. Liu, S. Chen, Z. Chen et al., Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries. Adv. Energy Mater. 14(31), 2400808 (2024). https://doi.org/10.1002/aenm.202400808
X. Da, J. Chen, Y. Qin, J. Zhao, X. Jia et al., CO2-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries. Adv. Energy Mater. 14(11), 2303527 (2024). https://doi.org/10.1002/aenm.202303527
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
J. Li, Z. Hu, S. Zhang, H. Zhang, S. Guo et al., Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes. Nat. Sustain. 7(11), 1481–1491 (2024). https://doi.org/10.1038/s41893-024-01414-7
Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16(1), 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
T. Meng, R. Liu, J. Cai, X. Cheng, Z. He et al., Breaking structural symmetry of atomically dispersed co sites for boosting oxygen reduction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202522046
Z. Wang, Y.-H. Lee, S.-W. Kim, J.-Y. Seo, S.-Y. Lee et al., Why cellulose-based electrochemical energy storage devices? Adv. Mater. 33(28), e2000892 (2021). https://doi.org/10.1002/adma.202000892
D. Wang, H. Xie, Q. Liu, K. Mu, Z. Song et al., Low-cost, high-strength cellulose-based quasi-solid polymer electrolyte for solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 62(25), e202302767 (2023). https://doi.org/10.1002/anie.202302767
S. Duan, L. Qian, Y. Zheng, Y. Zhu, X. Liu et al., Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries. Adv. Mater. 36(32), 2314120 (2024). https://doi.org/10.1002/adma.202314120
X. Zhang, Q. Su, G. Du, B. Xu, S. Wang et al., Stabilizing solid-state lithium metal batteries through in situ generated Janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes. Angew. Chem. Int. Ed. 62(39), e202304947 (2023). https://doi.org/10.1002/anie.202304947
F. Yu, Y. Mu, M. Han, J. Liu, K. Zheng et al., Electrochemically stable and ultrathin polymer-based solid electrolytes for dendrite-free all-solid-state lithium-metal batteries. Mater. Futur. 4(1), 015101 (2025). https://doi.org/10.1088/2752-5724/ada0cc
Z. Zhang, W. Fan, K. Cui, J. Gou, Y. Huang, Design of ultrathin asymmetric composite electrolytes for interfacial stable solid-state lithium-metal batteries. ACS Nano 18(27), 17890–17900 (2024). https://doi.org/10.1021/acsnano.4c04429
X. He, H. Qin, J. Liu, J. Wang, Z. Xiao et al., Molecular interlocking multidimensional modulations of cathode-electrolyte interface for constructing high energy density quasi-solid-state batteries. Adv. Energy Mater. 15(33), 2502363 (2025). https://doi.org/10.1002/aenm.202502363
C. Ma, D. Hou, J. Jiang, Y. Fan, X. Li et al., Elucidating the synergic effect in nanoscale MoS2/TiO2 heterointerface for Na-ion storage. Adv. Sci. 9(35), 2204837 (2022). https://doi.org/10.1002/advs.202204837
Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13(12), 2203640 (2023). https://doi.org/10.1002/aenm.202203640
Q. Lv, Y. Jing, B. Wang, B. Wu, S. Wang et al., Multilayer asymmetric solid polymer electrolyte with modified interface for high-voltage solid-state Li metal batteries. Energy Storage Mater. 65, 103122 (2024). https://doi.org/10.1016/j.ensm.2023.103122
X. Song, K. Ma, J. Wang, H. Wang, H. Xie et al., Three-dimensional metal–organic framework@Cellulose skeleton-reinforced composite polymer electrolyte for all-solid-state lithium metal battery. ACS Nano 18(19), 12311–12324 (2024). https://doi.org/10.1021/acsnano.4c01257
J. Tian, J. Ji, Y. Zhu, Y. He, H. Li et al., Phenylboronic acid functionalized calix [4] pyrrole-based solid-state supramolecular electrolyte. Adv. Mater. 36(7), e2308507 (2024). https://doi.org/10.1002/adma.202308507
Z. Wang, Y. Hou, S. Li, Z. Xu, X. Zhu et al., Quasi-solid composite polymer electrolyte-based structural batteries with high ionic conductivity and excellent mechanical properties. Small Struct. 5(8), 2400050 (2024). https://doi.org/10.1002/sstr.202400050
S. Yin, Y. Huang, Y. Liu, L. Cheng, M. Chen et al., Advanced composite solid electrolyte architecture constructed with amino-modified cellulose and carbon nitride via biosynthetic avenue. Adv. Funct. Mater. 34(24), 2314976 (2024). https://doi.org/10.1002/adfm.202314976
Y.-Q. Mao, G.-H. Dong, W.-B. Zhu, Y.-Q. Li, P. Huang et al., Novel sandwich structured glass fiber cloth/Poly(ethylene oxide)-MXene composite electrolyte. Nano Mater. Sci. 6(1), 60–67 (2024). https://doi.org/10.1016/j.nanoms.2023.01.001
X. Wen, Q. Zeng, J. Guan, W. Wen, P. Chen et al., 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries. J. Mater. Chem. A 10(2), 707–718 (2022). https://doi.org/10.1039/d1ta07252h
Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu et al., A metal–organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30(2), 1704436 (2018). https://doi.org/10.1002/adma.201704436
Y. Zhang, J. Huang, H. Liu, W. Kou, Y. Dai et al., Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 13(23), 2300156 (2023). https://doi.org/10.1002/aenm.202300156
L. Du, B. Zhang, W. Deng, Y. Cheng, L. Xu et al., Hierarchically self-assembled MOF network enables continuous ion transport and high mechanical strength. Adv. Energy Mater. 12(24), 2200501 (2022). https://doi.org/10.1002/aenm.202200501
Y. Zheng, N. Yang, R. Gao, Z. Li, H. Dou et al., “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 34(44), 2203417 (2022). https://doi.org/10.1002/adma.202203417
P. Pan, M. Zhang, Z. Cheng, L. Jiang, J. Mao et al., Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable all-solid-state lithium metal batteries. Energy Storage Mater. 47, 279–287 (2022). https://doi.org/10.1016/j.ensm.2022.02.018
A. Hu, Z. Sun, Q. Hou, J. Duan, C. Li et al., Regulating lithium plating/stripping behavior by a composite polymer electrolyte endowed with designated ion channels. Small 18(52), 2205571 (2022). https://doi.org/10.1002/smll.202205571
H. Lian, R. Momen, Y. Xiao, B. Song, X. Hu et al., High ionic conductivity motivated by multiple ion-transport channels in 2D MOF-based lithium solid state battery. Adv. Funct. Mater. 33(49), 2306060 (2023). https://doi.org/10.1002/adfm.202306060
G. Wang, P. He, L.-Z. Fan, Asymmetric polymer electrolyte constructed by metal–organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 31(3), 2007198 (2021). https://doi.org/10.1002/adfm.202007198
C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous MOF based dendrites inhibition hybrid solid-state electrolytes. Small 19(21), 2300066 (2023). https://doi.org/10.1002/smll.202300066
L. Cui, K. Zhu, R. Li, C. Chang, L. Wu et al., The Cambrian microfossil Qingjiangonema reveals the co-evolution of sulfate-reducing bacteria and the oxygenation of Earth’s surface. Sci. Bull. 69(10), 1486–1494 (2024). https://doi.org/10.1016/j.scib.2024.03.001
D. Zhang, X. Meng, W. Zhang, J. Mo, Q. Zhao et al., A thin and ultrahigh-ionic-conductivity composite electrolyte with 3D aramid nanofiber networks toward ambient-temperature lithium metal batteries. Adv. Energy Mater. 15(9), 2403565 (2025). https://doi.org/10.1002/aenm.202403565
S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13(44), 2302711 (2023). https://doi.org/10.1002/aenm.202302711
J. Song, Y. Xu, Y. Zhou, P. Wang, H. Feng et al., Cellulose-assisted vertically heterostructured PEO-based solid electrolytes mitigating Li-succinonitrile corrosion for lithium metal batteries. ACS Appl. Mater. Interfaces 15(17), 20897–20908 (2023). https://doi.org/10.1021/acsami.2c22562
X. Yi, Y. Yang, K. Xiao, S. Zhang, B. Wang et al., Achieving balanced performance and safety for manufacturing all-solid-state lithium metal batteries by polymer base adjustment. Adv. Energy Mater. 15(10), 2404973 (2025). https://doi.org/10.1002/aenm.202404973
X.-L. Zhang, F.-Y. Shen, X. Long, S. Zheng, Z. Ruan et al., Fast Li+ transport and superior interfacial chemistry within composite polymer electrolyte enables ultra-long cycling solid-state Li-metal batteries. Energy Storage Mater. 52, 201–209 (2022). https://doi.org/10.1016/j.ensm.2022.07.045
C. Zhang, H. Zheng, L. Lin, J. Wen, S. Zhang et al., Deep eutectic solvent-based solid polymer electrolytes for high-voltage and high-safety lithium metal batteries. Adv. Energy Mater. 14(35), 2401324 (2024). https://doi.org/10.1002/aenm.202401324
S. Liu, Z. Ni, Z. Wang, J. Liu, H. Zhang et al., Synergistic ionic-molecular coordination engineering in weakly solvating ether electrolytes for stable high-voltage lithium metal batteries. Energy Storage Mater. 81, 104467 (2025). https://doi.org/10.1016/j.ensm.2025.104467