Polyhydroxy Hydrogel Electrolyte with In Situ Tuned Interface Chemistry for Ultra-Stable Biosensing-Compatible Zinc Batteries
Corresponding Author: Jieshan Qiu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 217
Abstract
Aqueous zinc batteries (ZBs) represent a promising sustainable and safe energy storage technology, yet their widespread adoption is impeded by persistent interfacial instabilities at Zn anodes. This study reports a polyhydroxy hydrogel electrolyte (PASHE) with in situ regulated interface chemistry suitable for biosensing compatible ZBs. Benefiting from the well-integrated interface via in situ strategy, the hydroxyl-rich L-sorbose in PASHE establishes kinetically favorable Zn2+ transport pathways and regulates interfacial ion-adsorption hierarchies, synergistically homogenizing ion distribution and promoting preferential crystallographic orientation. Furthermore, PASHE constructs a low water-activity microenvironment via interfacial preferential adsorption, oxygen-rich solid electrolyte interphase evolution, and Zn2+ solvation sheath reconstruction. These effects enable Zn (002)-textured electrodeposition and inhibitory side reactions, achieving dendrite-free Zn plating/stripping with exceptional stability (3300 h in Zn//Zn cells) and near-perfect reversibility (average coulombic efficiency of 99.6% over 1200 cycles in Zn//Cu cells). This strategy delivers unprecedented cyclability in flexible Zn//I2 batteries (94.9% retention after 9000 cycles) and Zn-ion hybrid capacitors (98.0% after 43,000 cycles). Notably, we demonstrate an integrated biosensing platform that couples PASHE-based biosensor with cascaded Zn//I2 batteries, realizing real-time monitoring of physiological signals and biomechanical motions. This work proposes dual strategies of in situ approach and functional additive to design hydrogel electrolytes, bridging high-performance ZBs with next-generation biosensing technologies.
Highlights:
1 Polyhydroxy hydrogel electrolyte enables in situ dual regulations of Zn-electrolyte interfacial chemistry and bulk electrolyte properties.
2 Reversible Zn anodes with exceptional cycling stability and perfect coulombic efficiency are achieved.
3 A self-powered biosensing platform that integrates Zn//I2 batteries with hydrogel sensor achieves real-time physiological monitoring.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- D.-Q. Cai, H. Xu, T. Xue, J.-L. Yang, H.J. Fan, A synchronous strategy to Zn-iodine battery by polycationic long-chain molecules. Nano-Micro Lett. 18, 3 (2026). https://doi.org/10.1007/s40820-025-01854-6
- Z.-C. Zhang, Y.-B. Mu, L.-J. Xiao, X.-Y. Wei, M.-S. Han et al., Advancements in manganese-based cathodes for aqueous zinc-ion batteries: challenges and optimization strategies. cMat 2(1), e70000 (2025). https://doi.org/10.1002/cmt2.70000
- Y. Xin, M. Zhu, H. Zhang, X. Wang, High-entropy materials: a new paradigm in the design of advanced batteries. Nano-Micro Lett. 18(1), 1 (2025). https://doi.org/10.1007/s40820-025-01842-w
- Z.-Z. Shen, D.-H. Yu, H.-Y. Ding, Y. Peng, Y.-H. Chen et al., Advancements in metal-iodine batteries: progress and perspectives. Rare Met. 44(4), 2143–2179 (2025). https://doi.org/10.1007/s12598-024-03048-2
- S. Guo, L. Qin, J. Wu, Z. Liu, Y. Huang et al., Conversion-type anode chemistry with interfacial compatibility toward Ah-level near-neutral high-voltage zinc ion batteries. Natl. Sci. Rev. 11(7), nwae181 (2024). https://doi.org/10.1093/nsr/nwae181
- H.-L. Li, Z.-X. Liu, Y. Tang, S.-Q. Liang, G.-Z. Fang, Copper-based materials in anode electrode of aqueous zinc metal batteries. cMat 1(2), e25 (2024). https://doi.org/10.1002/cmt2.25
- Z. Cheng, K. Wang, J. Fu, F. Mo, P. Lu et al., Texture exposure of unconventional (101)Zn facet: enabling dendrite-free Zn deposition on metallic zinc anodes. Adv. Energy Mater. 14(16), 2304003 (2024). https://doi.org/10.1002/aenm.202304003
- N. Hu, J. Tao, Y. Tan, H. Song, D. Huang et al., Comprehensive understanding of steric-hindrance effect on the trade-off between zinc ions transfer and reduction kinetics to enable highly reversible and stable Zn anodes. Adv. Energy Mater. 14(46), 2404018 (2024). https://doi.org/10.1002/aenm.202404018
- S. Zhang, Q. Gou, W. Chen, H. Luo, R. Yuan et al., Co-regulating solvation structure and hydrogen bond network via bio-inspired additive for highly reversible zinc anode. Adv. Sci. 11(35), 2404968 (2024). https://doi.org/10.1002/advs.202404968
- L. Chen, T. Xiao, J.-L. Yang, Y. Liu, J. Xian et al., In-situ spontaneous electropolymerization enables robust hydrogel electrolyte interfaces in aqueous batteries. Angew. Chem. Int. Ed. 63(21), e202400230 (2024). https://doi.org/10.1002/anie.202400230
- Z. Shen, Z. Zhai, Y. Liu, X. Bao, Y. Zhu et al., Hydrogel electrolytes-based rechargeable zinc-ion batteries under harsh conditions. Nano-Micro Lett. 17(1), 227 (2025). https://doi.org/10.1007/s40820-025-01727-y
- Z. Yang, Q. Zhang, T. Wu, Q. Li, J. Shi et al., Thermally healable electrolyte-electrode interface for sustainable quasi-solid zinc-ion batteries. Angew. Chem. Int. Ed. 63(9), e202317457 (2024). https://doi.org/10.1002/anie.202317457
- Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 34(44), e2207118 (2022). https://doi.org/10.1002/adma.202207118
- Z. Liu, W. Zhang, H. Yin, F. Guo, H. Mi et al., Gradient solid electrolyte interphase exerted by robust hydrogel electrolyte-Zn interface and alkaloid additive enables reversible and durable Zn anodes. Chem. Eng. J. 497, 154787 (2024). https://doi.org/10.1016/j.cej.2024.154787
- H. Lin, L. Zeng, C. Lin, J. Wu, H. He et al., Interfacial regulation via configuration screening of a disodium naphthalenedisulfonate additive enabled high-performance wide-pH Zn-based batteries. Energy Environ. Sci. 18(3), 1282–1293 (2025). https://doi.org/10.1039/D4EE04212C
- K. Ouyang, F. Li, D. Ma, Y. Wang, S. Shen et al., Trace-additive-mediated hydrophobic structure editing of aqueous zinc metal batteries for enabling all-climate long-term operation. ACS Energy Lett. 8(12), 5229–5239 (2023). https://doi.org/10.1021/acsenergylett.3c01872
- Y. Ding, X. Zhang, T. Wang, B. Lu, Z. Zeng et al., A dynamic electrostatic shielding layer toward highly reversible Zn metal anode. Energy Storage Mater. 62, 102949 (2023). https://doi.org/10.1016/j.ensm.2023.102949
- H. Dong, X. Hu, R. Liu, M. Ouyang, H. He et al., Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries. Angew. Chem. Int. Ed. 62(41), e202311268 (2023). https://doi.org/10.1002/anie.202311268
- H. Li, Y. Ren, Y. Zhu, J. Tian, X. Sun et al., A bio-inspired trehalose additive for reversible zinc anodes with improved stability and kinetics. Angew. Chem. Int. Ed. 62(41), e202310143 (2023). https://doi.org/10.1002/anie.202310143
- F. Bu, Y. Gao, W. Zhao, Q. Cao, Y. Deng et al., Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures. Angew. Chem. Int. Ed. 63(9), e202318496 (2024). https://doi.org/10.1002/anie.202318496
- Q. Zhou, F. Zhang, Z. Tan, T. Wang, D.-C. Qi et al., Gradient hydrogel electrolyte enables high ionic conductivity and robust mechanical properties for dendrite-free aqueous zinc-ion battery. Adv. Mater. (2025). https://doi.org/10.1002/adma.202512775
- W. Guo, L. Xu, Y. Su, L. Zhao, Y. Ding et al., Synchronous modulation of H-bond interaction and steric hindrance via bio-molecular additive screening in Zn batteries. Angew. Chem. Int. Ed. 64(5), e202417125 (2025). https://doi.org/10.1002/anie.202417125
- M. Shi, C. Lei, H. Wang, P. Jiang, C. Xu et al., Molecule engineering of sugar derivatives as electrolyte additives for deep-reversible Zn metal anode. Angew. Chem. Int. Ed. 63(35), e202407261 (2024). https://doi.org/10.1002/anie.202407261
- G. Liu, Y. Tang, Y. Wei, H. Li, J. Yan et al., Hydrophobic ion barrier-enabled ultradurable Zn (002) plane orientation towards long-life anode-less Zn batteries. Angew. Chem. Int. Ed. 63(40), e202407639 (2024). https://doi.org/10.1002/anie.202407639
- X. Rao, Y. Han, L. Luo, L. Hu, L. Yan et al., Molecular crowding effect synergies ice breaking: a cryogenic revival prescription for aqueous Zn-ion batteries. Energy Storage Mater. 79, 104326 (2025). https://doi.org/10.1016/j.ensm.2025.104326
- Y. Song, M. Chen, Z. Zhong, Z. Liu, S. Liang et al., Bilateral in situ functionalization towards Ah-scale aqueous zinc metal batteries. Nat. Commun. 16(1), 3142 (2025). https://doi.org/10.1038/s41467-025-58153-2
- M. He, J. Chen, A. Hu, Z. Yan, L. Cao et al., Manipulating cation-water chemistry to inhibit hydrogen evolution of zinc metal anodes. Energy Storage Mater. 62, 102941 (2023). https://doi.org/10.1016/j.ensm.2023.102941
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- G. Guo, C. Ji, J. Lin, T. Wu, Y. Luo et al., Interfacial domino effect triggered by β-alanine cations realized highly reversible zinc-metal anodes. Angew. Chem. Int. Ed. 63(33), e202407417 (2024). https://doi.org/10.1002/anie.202407417
- J. Yang, B. Yin, S. Zhang, Y. Sun, J. Li et al., Macromolecules promoting robust zinc anode by synergistic coordination effect and charge redistribution. Small 19(45), 2304913 (2023). https://doi.org/10.1002/smll.202304913
- H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
- H. Wang, H. Li, Y. Tang, Z. Xu, K. Wang et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 32(48), 2270271 (2022). https://doi.org/10.1002/adfm.202270271
- R. Huang, J. Zhang, W. Wang, X. Wu, X. Liao et al., Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes. Energy Environ. Sci. 17(9), 3179–3190 (2024). https://doi.org/10.1039/D4EE00109E
- R. Chen, W. Zhang, C. Guan, Y. Zhou, I. Gilmore et al., Rational design of an in situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions. Angew. Chem. Int. Ed. 63(21), e202401987 (2024). https://doi.org/10.1002/anie.202401987
- C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
- J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15(1), 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
- Z. Qu, J. Ma, Y. Huang, T. Li, H. Tang et al., A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices. Adv. Mater. 36(15), 2310667 (2024). https://doi.org/10.1002/adma.202310667
- L. Wu, H. Yuan, Y. An, J. Sun, Y. Liu et al., Sulfurized composite interphase enables a highly reversible Zn anode. Angew. Chem. Int. Ed. 64(7), e202419495 (2025). https://doi.org/10.1002/anie.202419495
- H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao et al., Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2(12), 2674–2680 (2017). https://doi.org/10.1021/acsenergylett.7b00851
- X. Bu, M. Li, Z. Liu, S. Liang, G. Fang, In-situ alloying interface inducing Zn(002) texture towards stable high-utilization zinc anodes. Adv. Powder Mater. 4(5), 100332 (2025). https://doi.org/10.1016/j.apmate.2025.100332
- Y. Li, H. Xu, X. Li, X. Lin, H. Zhao et al., Molecular damping effect of trace additives enhances zinc anode stability under high depth of discharge. Adv. Sci. 12(37), e07071 (2025). https://doi.org/10.1002/advs.202507071
- X. Bai, Y. Nan, K. Yang, B. Deng, J. Shao et al., Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries. Adv. Funct. Mater. 33(42), 2307595 (2023). https://doi.org/10.1002/adfm.202307595
- J. Chen, G. Ou, P. Liu, W. Fan, B. Li et al., Pyrrolic-nitrogen chemistry in 1-(2-hydroxyethyl)imidazole electrolyte additives toward a 50, 000-cycle-life aqueous zinc-iodine battery. Angew. Chem. Int. Ed. 64(2), e202414166 (2025). https://doi.org/10.1002/anie.202414166
- Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
- T. Yan, B. Wu, S. Liu, M. Tao, J. Liang et al., Sieving-type electric double layer with hydrogen bond interlocking to stable zinc metal anode. Angew. Chem. Int. Ed. 63(47), e202411470 (2024). https://doi.org/10.1002/anie.202411470
- W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32(20), 2112609 (2022). https://doi.org/10.1002/adfm.202112609
- T. Wei, X. Zhang, Y. Ren, Y. Wang, Z. Li et al., Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode. Chem. Eng. J. 457, 141272 (2023). https://doi.org/10.1016/j.cej.2023.141272
- M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62(27), e202302701 (2023). https://doi.org/10.1002/anie.202302701
- D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(38), e202310290 (2023). https://doi.org/10.1002/anie.202310290
- H. Peng, C. Wang, D. Wang, X. Song, C. Zhang et al., Dynamic Zn/electrolyte interphase and enhanced cation transfer of sol electrolyte for all-climate aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(34), e202308068 (2023). https://doi.org/10.1002/anie.202308068
- J. Dong, L. Su, H. Peng, D. Wang, H. Zong et al., Spontaneous molecule aggregation for nearly single-ion conducting sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin. Angew. Chem. Int. Ed. 63(21), e202401441 (2024). https://doi.org/10.1002/anie.202401441
- J. Chen, N. Liu, W. Dong, Y. Xu, Y. Cao et al., Simultaneous regulation of coordination environment and electrode interface for highly stable zinc anode using a bifunctional citrulline additive. Adv. Funct. Mater. 34(26), 2313925 (2024). https://doi.org/10.1002/adfm.202313925
- L. Zhou, F. Wang, F. Yang, X. Liu, Y. Yu et al., Unshared pair electrons of zincophilic lewis base enable long-life Zn anodes under “three high” conditions. Angew. Chem. Int. Ed. 134(40), e202208051 (2022). https://doi.org/10.1002/ange.202208051
- G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), 2408287 (2024). https://doi.org/10.1002/adma.202408287
- L. Ma, M.A. Schroeder, T.P. Pollard, O. Borodin, M.S. Ding et al., Critical factors dictating reversibility of the zinc metal anode. Energy Environ. Mater. 3(4), 516–521 (2020). https://doi.org/10.1002/eem2.12077
References
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
D.-Q. Cai, H. Xu, T. Xue, J.-L. Yang, H.J. Fan, A synchronous strategy to Zn-iodine battery by polycationic long-chain molecules. Nano-Micro Lett. 18, 3 (2026). https://doi.org/10.1007/s40820-025-01854-6
Z.-C. Zhang, Y.-B. Mu, L.-J. Xiao, X.-Y. Wei, M.-S. Han et al., Advancements in manganese-based cathodes for aqueous zinc-ion batteries: challenges and optimization strategies. cMat 2(1), e70000 (2025). https://doi.org/10.1002/cmt2.70000
Y. Xin, M. Zhu, H. Zhang, X. Wang, High-entropy materials: a new paradigm in the design of advanced batteries. Nano-Micro Lett. 18(1), 1 (2025). https://doi.org/10.1007/s40820-025-01842-w
Z.-Z. Shen, D.-H. Yu, H.-Y. Ding, Y. Peng, Y.-H. Chen et al., Advancements in metal-iodine batteries: progress and perspectives. Rare Met. 44(4), 2143–2179 (2025). https://doi.org/10.1007/s12598-024-03048-2
S. Guo, L. Qin, J. Wu, Z. Liu, Y. Huang et al., Conversion-type anode chemistry with interfacial compatibility toward Ah-level near-neutral high-voltage zinc ion batteries. Natl. Sci. Rev. 11(7), nwae181 (2024). https://doi.org/10.1093/nsr/nwae181
H.-L. Li, Z.-X. Liu, Y. Tang, S.-Q. Liang, G.-Z. Fang, Copper-based materials in anode electrode of aqueous zinc metal batteries. cMat 1(2), e25 (2024). https://doi.org/10.1002/cmt2.25
Z. Cheng, K. Wang, J. Fu, F. Mo, P. Lu et al., Texture exposure of unconventional (101)Zn facet: enabling dendrite-free Zn deposition on metallic zinc anodes. Adv. Energy Mater. 14(16), 2304003 (2024). https://doi.org/10.1002/aenm.202304003
N. Hu, J. Tao, Y. Tan, H. Song, D. Huang et al., Comprehensive understanding of steric-hindrance effect on the trade-off between zinc ions transfer and reduction kinetics to enable highly reversible and stable Zn anodes. Adv. Energy Mater. 14(46), 2404018 (2024). https://doi.org/10.1002/aenm.202404018
S. Zhang, Q. Gou, W. Chen, H. Luo, R. Yuan et al., Co-regulating solvation structure and hydrogen bond network via bio-inspired additive for highly reversible zinc anode. Adv. Sci. 11(35), 2404968 (2024). https://doi.org/10.1002/advs.202404968
L. Chen, T. Xiao, J.-L. Yang, Y. Liu, J. Xian et al., In-situ spontaneous electropolymerization enables robust hydrogel electrolyte interfaces in aqueous batteries. Angew. Chem. Int. Ed. 63(21), e202400230 (2024). https://doi.org/10.1002/anie.202400230
Z. Shen, Z. Zhai, Y. Liu, X. Bao, Y. Zhu et al., Hydrogel electrolytes-based rechargeable zinc-ion batteries under harsh conditions. Nano-Micro Lett. 17(1), 227 (2025). https://doi.org/10.1007/s40820-025-01727-y
Z. Yang, Q. Zhang, T. Wu, Q. Li, J. Shi et al., Thermally healable electrolyte-electrode interface for sustainable quasi-solid zinc-ion batteries. Angew. Chem. Int. Ed. 63(9), e202317457 (2024). https://doi.org/10.1002/anie.202317457
Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 34(44), e2207118 (2022). https://doi.org/10.1002/adma.202207118
Z. Liu, W. Zhang, H. Yin, F. Guo, H. Mi et al., Gradient solid electrolyte interphase exerted by robust hydrogel electrolyte-Zn interface and alkaloid additive enables reversible and durable Zn anodes. Chem. Eng. J. 497, 154787 (2024). https://doi.org/10.1016/j.cej.2024.154787
H. Lin, L. Zeng, C. Lin, J. Wu, H. He et al., Interfacial regulation via configuration screening of a disodium naphthalenedisulfonate additive enabled high-performance wide-pH Zn-based batteries. Energy Environ. Sci. 18(3), 1282–1293 (2025). https://doi.org/10.1039/D4EE04212C
K. Ouyang, F. Li, D. Ma, Y. Wang, S. Shen et al., Trace-additive-mediated hydrophobic structure editing of aqueous zinc metal batteries for enabling all-climate long-term operation. ACS Energy Lett. 8(12), 5229–5239 (2023). https://doi.org/10.1021/acsenergylett.3c01872
Y. Ding, X. Zhang, T. Wang, B. Lu, Z. Zeng et al., A dynamic electrostatic shielding layer toward highly reversible Zn metal anode. Energy Storage Mater. 62, 102949 (2023). https://doi.org/10.1016/j.ensm.2023.102949
H. Dong, X. Hu, R. Liu, M. Ouyang, H. He et al., Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries. Angew. Chem. Int. Ed. 62(41), e202311268 (2023). https://doi.org/10.1002/anie.202311268
H. Li, Y. Ren, Y. Zhu, J. Tian, X. Sun et al., A bio-inspired trehalose additive for reversible zinc anodes with improved stability and kinetics. Angew. Chem. Int. Ed. 62(41), e202310143 (2023). https://doi.org/10.1002/anie.202310143
F. Bu, Y. Gao, W. Zhao, Q. Cao, Y. Deng et al., Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures. Angew. Chem. Int. Ed. 63(9), e202318496 (2024). https://doi.org/10.1002/anie.202318496
Q. Zhou, F. Zhang, Z. Tan, T. Wang, D.-C. Qi et al., Gradient hydrogel electrolyte enables high ionic conductivity and robust mechanical properties for dendrite-free aqueous zinc-ion battery. Adv. Mater. (2025). https://doi.org/10.1002/adma.202512775
W. Guo, L. Xu, Y. Su, L. Zhao, Y. Ding et al., Synchronous modulation of H-bond interaction and steric hindrance via bio-molecular additive screening in Zn batteries. Angew. Chem. Int. Ed. 64(5), e202417125 (2025). https://doi.org/10.1002/anie.202417125
M. Shi, C. Lei, H. Wang, P. Jiang, C. Xu et al., Molecule engineering of sugar derivatives as electrolyte additives for deep-reversible Zn metal anode. Angew. Chem. Int. Ed. 63(35), e202407261 (2024). https://doi.org/10.1002/anie.202407261
G. Liu, Y. Tang, Y. Wei, H. Li, J. Yan et al., Hydrophobic ion barrier-enabled ultradurable Zn (002) plane orientation towards long-life anode-less Zn batteries. Angew. Chem. Int. Ed. 63(40), e202407639 (2024). https://doi.org/10.1002/anie.202407639
X. Rao, Y. Han, L. Luo, L. Hu, L. Yan et al., Molecular crowding effect synergies ice breaking: a cryogenic revival prescription for aqueous Zn-ion batteries. Energy Storage Mater. 79, 104326 (2025). https://doi.org/10.1016/j.ensm.2025.104326
Y. Song, M. Chen, Z. Zhong, Z. Liu, S. Liang et al., Bilateral in situ functionalization towards Ah-scale aqueous zinc metal batteries. Nat. Commun. 16(1), 3142 (2025). https://doi.org/10.1038/s41467-025-58153-2
M. He, J. Chen, A. Hu, Z. Yan, L. Cao et al., Manipulating cation-water chemistry to inhibit hydrogen evolution of zinc metal anodes. Energy Storage Mater. 62, 102941 (2023). https://doi.org/10.1016/j.ensm.2023.102941
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
G. Guo, C. Ji, J. Lin, T. Wu, Y. Luo et al., Interfacial domino effect triggered by β-alanine cations realized highly reversible zinc-metal anodes. Angew. Chem. Int. Ed. 63(33), e202407417 (2024). https://doi.org/10.1002/anie.202407417
J. Yang, B. Yin, S. Zhang, Y. Sun, J. Li et al., Macromolecules promoting robust zinc anode by synergistic coordination effect and charge redistribution. Small 19(45), 2304913 (2023). https://doi.org/10.1002/smll.202304913
H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
H. Wang, H. Li, Y. Tang, Z. Xu, K. Wang et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 32(48), 2270271 (2022). https://doi.org/10.1002/adfm.202270271
R. Huang, J. Zhang, W. Wang, X. Wu, X. Liao et al., Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes. Energy Environ. Sci. 17(9), 3179–3190 (2024). https://doi.org/10.1039/D4EE00109E
R. Chen, W. Zhang, C. Guan, Y. Zhou, I. Gilmore et al., Rational design of an in situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions. Angew. Chem. Int. Ed. 63(21), e202401987 (2024). https://doi.org/10.1002/anie.202401987
C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15(1), 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
Z. Qu, J. Ma, Y. Huang, T. Li, H. Tang et al., A photolithographable electrolyte for deeply rechargeable Zn microbatteries in on-chip devices. Adv. Mater. 36(15), 2310667 (2024). https://doi.org/10.1002/adma.202310667
L. Wu, H. Yuan, Y. An, J. Sun, Y. Liu et al., Sulfurized composite interphase enables a highly reversible Zn anode. Angew. Chem. Int. Ed. 64(7), e202419495 (2025). https://doi.org/10.1002/anie.202419495
H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao et al., Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2(12), 2674–2680 (2017). https://doi.org/10.1021/acsenergylett.7b00851
X. Bu, M. Li, Z. Liu, S. Liang, G. Fang, In-situ alloying interface inducing Zn(002) texture towards stable high-utilization zinc anodes. Adv. Powder Mater. 4(5), 100332 (2025). https://doi.org/10.1016/j.apmate.2025.100332
Y. Li, H. Xu, X. Li, X. Lin, H. Zhao et al., Molecular damping effect of trace additives enhances zinc anode stability under high depth of discharge. Adv. Sci. 12(37), e07071 (2025). https://doi.org/10.1002/advs.202507071
X. Bai, Y. Nan, K. Yang, B. Deng, J. Shao et al., Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries. Adv. Funct. Mater. 33(42), 2307595 (2023). https://doi.org/10.1002/adfm.202307595
J. Chen, G. Ou, P. Liu, W. Fan, B. Li et al., Pyrrolic-nitrogen chemistry in 1-(2-hydroxyethyl)imidazole electrolyte additives toward a 50, 000-cycle-life aqueous zinc-iodine battery. Angew. Chem. Int. Ed. 64(2), e202414166 (2025). https://doi.org/10.1002/anie.202414166
Q. Zhao, W. Liu, X. Ni, H. Yu, C. Zhang et al., Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 34(41), 2404219 (2024). https://doi.org/10.1002/adfm.202404219
T. Yan, B. Wu, S. Liu, M. Tao, J. Liang et al., Sieving-type electric double layer with hydrogen bond interlocking to stable zinc metal anode. Angew. Chem. Int. Ed. 63(47), e202411470 (2024). https://doi.org/10.1002/anie.202411470
W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32(20), 2112609 (2022). https://doi.org/10.1002/adfm.202112609
T. Wei, X. Zhang, Y. Ren, Y. Wang, Z. Li et al., Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode. Chem. Eng. J. 457, 141272 (2023). https://doi.org/10.1016/j.cej.2023.141272
M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62(27), e202302701 (2023). https://doi.org/10.1002/anie.202302701
D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(38), e202310290 (2023). https://doi.org/10.1002/anie.202310290
H. Peng, C. Wang, D. Wang, X. Song, C. Zhang et al., Dynamic Zn/electrolyte interphase and enhanced cation transfer of sol electrolyte for all-climate aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(34), e202308068 (2023). https://doi.org/10.1002/anie.202308068
J. Dong, L. Su, H. Peng, D. Wang, H. Zong et al., Spontaneous molecule aggregation for nearly single-ion conducting sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin. Angew. Chem. Int. Ed. 63(21), e202401441 (2024). https://doi.org/10.1002/anie.202401441
J. Chen, N. Liu, W. Dong, Y. Xu, Y. Cao et al., Simultaneous regulation of coordination environment and electrode interface for highly stable zinc anode using a bifunctional citrulline additive. Adv. Funct. Mater. 34(26), 2313925 (2024). https://doi.org/10.1002/adfm.202313925
L. Zhou, F. Wang, F. Yang, X. Liu, Y. Yu et al., Unshared pair electrons of zincophilic lewis base enable long-life Zn anodes under “three high” conditions. Angew. Chem. Int. Ed. 134(40), e202208051 (2022). https://doi.org/10.1002/ange.202208051
G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), 2408287 (2024). https://doi.org/10.1002/adma.202408287
L. Ma, M.A. Schroeder, T.P. Pollard, O. Borodin, M.S. Ding et al., Critical factors dictating reversibility of the zinc metal anode. Energy Environ. Mater. 3(4), 516–521 (2020). https://doi.org/10.1002/eem2.12077