Ultra‑Broadband and Ultra-High Electromagnetic Interference Shielding Performance of Aligned and Compact MXene Films
Corresponding Author: Xuchun Gui
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 234
Abstract
With the rapid development of electronic detective techniques, there is an urgent need for broadband (from microwave to infrared) stealth of aerospace equipment. However, achieving effective broadband stealth primarily relies on the composite of multi-layer coatings of different materials, while realizing broadband stealth with a single material remains a significant challenge. Herein, we reported a highly compact MXene film with aligned nanosheets through a continuous centrifugal spraying strategy. The film exhibits an exceptional electromagnetic interference shielding effectiveness of 45 dB in gigahertz band (8.2–40 GHz) and 59 dB in terahertz band (0.2–1.6 THz) at a thickness of 2.25 μm, owing to the high conductivity (1.03 × 106 S m−1). Moreover, exceptionally high specific shielding effectiveness of 1.545 × 106 dB cm2 g⁻1 has been demonstrated by the film, which is the highest value reported for shielding films. Additionally, the film exhibits an ultra-low infrared emissivity of 0.1 in the wide-range infrared band (2.5–16.0 μm), indicating its excellent infrared stealth performance for day-/nighttime outdoor environments. Moreover, the film demonstrates efficient electrothermal performance, including a high saturated temperature (over 120 °C at 1.0 V), a high heating rate (4.4 °C s−1 at 1.0 V), and a stable and uniform heating distribution. Therefore, this work provides a promising strategy for protecting equipment from multispectral electromagnetic interference and inhibiting infrared detection.
Highlights:
1 A highly aligned and compact MXene film for ultra‑broadband and ultra-high electromagnetic interference shielding was fabricated by continuous centrifugal spraying strategy.
2 The film exhibits an exceptional electromagnetic interference shielding effectiveness (EMI SE) of 45 dB, specific shielding effectiveness of 1.545 × 106 dB cm2 g⁻1 in gigahertz band (8.2–40 GHz), and EMI SE of 59 dB in terahertz band (0.2–1.6 THz).
3 The film exhibits an ultra-low infrared emissivity of 0.1 in the infrared band (2.5–16.0 μm) and an efficient electrothermal performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
- T.-T. Liu, Q. Zheng, W.-Q. Cao, Y.-Z. Wang, M. Zhang et al., In situ atomic reconstruction engineering modulating graphene-like MXene-based multifunctional electromagnetic devices covering multi-spectrum. Nano-Micro Lett. 16(1), 173 (2024). https://doi.org/10.1007/s40820-024-01391-8
- J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16(1), 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
- H. Liu, Y. Shao, Z. Wang, L. Jiang, B. Mou et al., Mechanically robust and multifunctional Ti3C2Tx MXene composite aerogel for broadband EMI shielding. Carbon 221, 118948 (2024). https://doi.org/10.1016/j.carbon.2024.118948
- T. Hassan, A. Iqbal, B. Yoo, J.Y. Jo, N. Cakmakci et al., Multifunctional MXene/carbon nanotube Janus film for electromagnetic shielding and infrared shielding/detection in harsh environments. Nano-Micro Lett. 16(1), 216 (2024). https://doi.org/10.1007/s40820-024-01431-3
- F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
- B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15(1), 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
- L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14(1), 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15(1), 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- S. Yang, Z. Lin, X. Wang, J. Huang, R. Yang et al., Stretchable, transparent, and ultra-broadband terahertz shielding thin films based on wrinkled MXene architectures. Nano-Micro Lett. 16(1), 165 (2024). https://doi.org/10.1007/s40820-024-01365-w
- Z. Wang, Q.-Q. Kong, Z.-L. Yi, L.-J. Xie, H. Jia et al., Electromagnetic interference shielding material for super-broadband: multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. J. Mater. Chem. A 9(46), 25999–26009 (2021). https://doi.org/10.1039/D1TA08106C
- T. Mai, L. Chen, P.-L. Wang, Q. Liu, M.-G. Ma, Hollow metal-organic framework/MXene/nanocellulose composite films for giga/terahertz electromagnetic shielding and photothermal conversion. Nano-Micro Lett. 16(1), 169 (2024). https://doi.org/10.1007/s40820-024-01386-5
- Y. Wu, S. Tan, G. Fang, Y. Zhang, G. Ji, Manipulating CNT films with atomic precision for absorption effectiveness–enhanced electromagnetic interference shielding and adaptive infrared camouflage. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402193
- T.-Y. Zhang, H. Wang, J. Tong, J. Zhang, X. Wang et al., High-efficiency ultraviolet shielding and high transparency of Ti3C2Tx MXene/poly(vinyl alcohol) nanocomposite films. Compos. Commun. 33, 101235 (2022). https://doi.org/10.1016/j.coco.2022.101235
- A. Iqbal, T. Hassan, S.M. Naqvi, Y. Gogotsi, C.M. Koo, MXenes for multispectral electromagnetic shielding. Nat. Rev. Electr. Eng. 1(3), 180–198 (2024). https://doi.org/10.1038/s44287-024-00024-x
- H. Liu, D. Hu, X. Chen, W. Ma, Surface engineering of nanops for highly efficient UV-shielding composites. Polym. Adv. Technol. 32(1), 6–16 (2021). https://doi.org/10.1002/pat.5081
- C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33(20), 2214223 (2023). https://doi.org/10.1002/adfm.202214223
- L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36(24), e2313939 (2024). https://doi.org/10.1002/adma.202313939
- Q. Yang, Y. Gao, T. Li, L. Ma, Q. Qi et al., Advances in carbon fiber-based electromagnetic shielding materials: Composition, structure, and application. Carbon 226, 119203 (2024). https://doi.org/10.1016/j.carbon.2024.119203
- B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35(11), e2210243 (2023). https://doi.org/10.1002/adma.202210243
- B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8(2), 500–509 (2020). https://doi.org/10.1039/C9TC05462F
- Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33(41), 2103054 (2021). https://doi.org/10.1002/adma.202103054
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- H. Wan, N. Liu, J. Tang, Q. Wen, X. Xiao, Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 15(8), 13646–13652 (2021). https://doi.org/10.1021/acsnano.1c04656
- T. Zhao, P. Xie, H. Wan, T. Ding, M. Liu et al., Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17(7), 622–628 (2023). https://doi.org/10.1038/s41566-023-01197-x
- L. Li, M. Shi, X. Liu, X. Jin, Y. Cao et al., Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31(35), 2101381 (2021). https://doi.org/10.1002/adfm.202101381
- J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16(4), 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
- Y.I. Jhon, J.H. Lee, Y.M. Jhon, Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: Density functional theory study. Mater. Today Commun. 32, 103917 (2022). https://doi.org/10.1016/j.mtcomm.2022.103917
- C. Wang, Z. Zhao, S. Zhou, L. Wang, X. Liu et al., Facile fabrication of densely packed ammoniated alumina/MXene/bacterial cellulose composite films for enhancing thermal conductivity and photothermal conversion performance. J. Mater. Sci. Technol. 213, 162–173 (2025). https://doi.org/10.1016/j.jmst.2024.06.024
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- J. Lipton, J.A. Röhr, V. Dang, A. Goad, K. Maleski et al., Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 3(2), 546–557 (2020). https://doi.org/10.1016/j.matt.2020.05.023
- L. Wang, Z. Yang, L. Lang, J. Men, T. Gao et al., Flexible multifunctional MXene/polyimide films with Janus structure for superior electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 8, 26 (2024). https://doi.org/10.1007/s42114-024-01100-4
- H.-W. Zhang, L.-Y. Yang, M.-L. Huang, M.-H. Cheng, Z.-S. Feng et al., Flexible MXene/sodium alginate composite fabric with high structural stability and oxidation resistance for electromagnetic interference shielding. Nano Res. 17(6), 5326–5335 (2024). https://doi.org/10.1007/s12274-024-6488-6
- L. Wang, L. Lang, X. Hu, T. Gao, M. He et al., Multifunctional ionic bonding-strengthened (Ti3C2Tx MXene/CNF)-(BNNS/CNF) composite films with Janus structure for outstanding electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 224, 46–55 (2025). https://doi.org/10.1016/j.jmst.2024.11.010
- Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19, 2304278 (2023). https://doi.org/10.1002/smll.202304278
- C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16(1), 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
- S. Feng, Y. Yi, B. Chen, P. Deng, Z. Zhou et al., Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 14(31), 36060–36070 (2022). https://doi.org/10.1021/acsami.2c11292
- T. Zhou, Y. Yu, B. He, Z. Wang, T. Xiong et al., Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 13(1), 4564 (2022). https://doi.org/10.1038/s41467-022-32361-6
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U. S. A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- C. Qi, C. Luo, Y. Tao, W. Lv, C. Zhang et al., Capillary shrinkage of graphene oxide hydrogels. Sci. China Mater. 63(10), 1870–1877 (2020). https://doi.org/10.1007/s40843-019-1227-7
- S. Wan, L. Jiang, Q. Cheng, Design principles of high-performance graphene films: interfaces and alignment. Matter 3(3), 696–707 (2020). https://doi.org/10.1016/j.matt.2020.06.023
- Y. Tao, X. Xie, W. Lv, D.-M. Tang, D. Kong et al., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). https://doi.org/10.1038/srep02975
- J. Zhong, W. Sun, Q. Wei, X. Qian, H.-M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
- S. Ni, J. Sheng, C. Zhang, X. Wu, C. Yang et al., Dendrite-free lithium deposition and stripping regulated by aligned microchannels for stable lithium metal batteries. Adv. Funct. Mater. 32(21), 2200682 (2022). https://doi.org/10.1002/adfm.202200682
- Y. Li, Q. Cheng, Discovery and elimination strategies of voids in two-dimensional carbon nanocomposites. Acc. Mater. Res. 5(3), 358–370 (2024). https://doi.org/10.1021/accountsmr.3c00255
- K. Huang, S. Pei, Q. Wei, Q. Zhang, J. Guo et al., Highly thermally conductive and flexible thermal interface materials with aligned graphene Lamella frameworks. ACS Nano 18(34), 23468–23476 (2024). https://doi.org/10.1021/acsnano.4c06952
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), e1907411 (2020). https://doi.org/10.1002/adma.201907411
- S. Yang, W. Huang, Z. Lin, Z. Chen, R. Yang et al., Janus MXene film with gradient structure for highly efficient terahertz and infrared electromagnetic absorption. Nano Res. 18(1), 94907041 (2025). https://doi.org/10.26599/nr.2025.94907041
- R. Yang, Q. Hu, S. Yang, Z. Zeng, H. Zhang et al., Anchoring oxidized MXene nanosheets on porous carbon nanotube sponge for enhancing ion transport and pseudocapacitive performance. ACS Appl. Mater. Interfaces 14(37), 41997–42006 (2022). https://doi.org/10.1021/acsami.2c10659
- S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10(44), 23570–23579 (2022). https://doi.org/10.1039/d2ta06805b
- Q. Zhang, R. Fan, W. Cheng, P. Ji, J. Sheng et al., Synthesis of large-area MXenes with high yields through power-focused delamination utilizing Vortex kinetic energy. Adv. Sci. 9(28), e2202748 (2022). https://doi.org/10.1002/advs.202202748
- M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- W. Minkina, Theoretical basics of radiant heat transfer – practical examples of calculation for the infrared (IR) used in infrared thermography measurements. Quant. InfraRed Thermogr. J. 18, 269 (2021). https://doi.org/10.1080/17686733.2020.1738164
- L. Nyman, J. Frolec, M. Pudas, T. Králík, V. Musilová et al., Low-emittance copper-coating system using atomic-layer-deposited aluminum oxide. Thin Solid Films 749, 139179 (2022). https://doi.org/10.1016/j.tsf.2022.139179
- M. Han, D. Zhang, A. Singh, T. Hryhorchuk, C. Eugene Shuck et al., Versatility of infrared properties of MXenes. Mater. Today 64, 31–39 (2023). https://doi.org/10.1016/j.mattod.2023.02.024
References
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15(1), 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
T.-T. Liu, Q. Zheng, W.-Q. Cao, Y.-Z. Wang, M. Zhang et al., In situ atomic reconstruction engineering modulating graphene-like MXene-based multifunctional electromagnetic devices covering multi-spectrum. Nano-Micro Lett. 16(1), 173 (2024). https://doi.org/10.1007/s40820-024-01391-8
J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16(1), 31 (2023). https://doi.org/10.1007/s40820-023-01246-8
H. Liu, Y. Shao, Z. Wang, L. Jiang, B. Mou et al., Mechanically robust and multifunctional Ti3C2Tx MXene composite aerogel for broadband EMI shielding. Carbon 221, 118948 (2024). https://doi.org/10.1016/j.carbon.2024.118948
T. Hassan, A. Iqbal, B. Yoo, J.Y. Jo, N. Cakmakci et al., Multifunctional MXene/carbon nanotube Janus film for electromagnetic shielding and infrared shielding/detection in harsh environments. Nano-Micro Lett. 16(1), 216 (2024). https://doi.org/10.1007/s40820-024-01431-3
F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15(1), 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15(1), 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14(1), 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15(1), 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
S. Yang, Z. Lin, X. Wang, J. Huang, R. Yang et al., Stretchable, transparent, and ultra-broadband terahertz shielding thin films based on wrinkled MXene architectures. Nano-Micro Lett. 16(1), 165 (2024). https://doi.org/10.1007/s40820-024-01365-w
Z. Wang, Q.-Q. Kong, Z.-L. Yi, L.-J. Xie, H. Jia et al., Electromagnetic interference shielding material for super-broadband: multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. J. Mater. Chem. A 9(46), 25999–26009 (2021). https://doi.org/10.1039/D1TA08106C
T. Mai, L. Chen, P.-L. Wang, Q. Liu, M.-G. Ma, Hollow metal-organic framework/MXene/nanocellulose composite films for giga/terahertz electromagnetic shielding and photothermal conversion. Nano-Micro Lett. 16(1), 169 (2024). https://doi.org/10.1007/s40820-024-01386-5
Y. Wu, S. Tan, G. Fang, Y. Zhang, G. Ji, Manipulating CNT films with atomic precision for absorption effectiveness–enhanced electromagnetic interference shielding and adaptive infrared camouflage. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402193
T.-Y. Zhang, H. Wang, J. Tong, J. Zhang, X. Wang et al., High-efficiency ultraviolet shielding and high transparency of Ti3C2Tx MXene/poly(vinyl alcohol) nanocomposite films. Compos. Commun. 33, 101235 (2022). https://doi.org/10.1016/j.coco.2022.101235
A. Iqbal, T. Hassan, S.M. Naqvi, Y. Gogotsi, C.M. Koo, MXenes for multispectral electromagnetic shielding. Nat. Rev. Electr. Eng. 1(3), 180–198 (2024). https://doi.org/10.1038/s44287-024-00024-x
H. Liu, D. Hu, X. Chen, W. Ma, Surface engineering of nanops for highly efficient UV-shielding composites. Polym. Adv. Technol. 32(1), 6–16 (2021). https://doi.org/10.1002/pat.5081
C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33(20), 2214223 (2023). https://doi.org/10.1002/adfm.202214223
L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36(24), e2313939 (2024). https://doi.org/10.1002/adma.202313939
Q. Yang, Y. Gao, T. Li, L. Ma, Q. Qi et al., Advances in carbon fiber-based electromagnetic shielding materials: Composition, structure, and application. Carbon 226, 119203 (2024). https://doi.org/10.1016/j.carbon.2024.119203
B. Zhao, Z. Yan, Y. Du, L. Rao, G. Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35(11), e2210243 (2023). https://doi.org/10.1002/adma.202210243
B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai et al., Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. J. Mater. Chem. C 8(2), 500–509 (2020). https://doi.org/10.1039/C9TC05462F
Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33(41), 2103054 (2021). https://doi.org/10.1002/adma.202103054
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
H. Wan, N. Liu, J. Tang, Q. Wen, X. Xiao, Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 15(8), 13646–13652 (2021). https://doi.org/10.1021/acsnano.1c04656
T. Zhao, P. Xie, H. Wan, T. Ding, M. Liu et al., Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photonics 17(7), 622–628 (2023). https://doi.org/10.1038/s41566-023-01197-x
L. Li, M. Shi, X. Liu, X. Jin, Y. Cao et al., Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31(35), 2101381 (2021). https://doi.org/10.1002/adfm.202101381
J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16(4), 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
Y.I. Jhon, J.H. Lee, Y.M. Jhon, Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: Density functional theory study. Mater. Today Commun. 32, 103917 (2022). https://doi.org/10.1016/j.mtcomm.2022.103917
C. Wang, Z. Zhao, S. Zhou, L. Wang, X. Liu et al., Facile fabrication of densely packed ammoniated alumina/MXene/bacterial cellulose composite films for enhancing thermal conductivity and photothermal conversion performance. J. Mater. Sci. Technol. 213, 162–173 (2025). https://doi.org/10.1016/j.jmst.2024.06.024
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
J. Lipton, J.A. Röhr, V. Dang, A. Goad, K. Maleski et al., Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 3(2), 546–557 (2020). https://doi.org/10.1016/j.matt.2020.05.023
L. Wang, Z. Yang, L. Lang, J. Men, T. Gao et al., Flexible multifunctional MXene/polyimide films with Janus structure for superior electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 8, 26 (2024). https://doi.org/10.1007/s42114-024-01100-4
H.-W. Zhang, L.-Y. Yang, M.-L. Huang, M.-H. Cheng, Z.-S. Feng et al., Flexible MXene/sodium alginate composite fabric with high structural stability and oxidation resistance for electromagnetic interference shielding. Nano Res. 17(6), 5326–5335 (2024). https://doi.org/10.1007/s12274-024-6488-6
L. Wang, L. Lang, X. Hu, T. Gao, M. He et al., Multifunctional ionic bonding-strengthened (Ti3C2Tx MXene/CNF)-(BNNS/CNF) composite films with Janus structure for outstanding electromagnetic interference shielding and thermal management. J. Mater. Sci. Technol. 224, 46–55 (2025). https://doi.org/10.1016/j.jmst.2024.11.010
Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19, 2304278 (2023). https://doi.org/10.1002/smll.202304278
C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16(1), 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
S. Feng, Y. Yi, B. Chen, P. Deng, Z. Zhou et al., Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 14(31), 36060–36070 (2022). https://doi.org/10.1021/acsami.2c11292
T. Zhou, Y. Yu, B. He, Z. Wang, T. Xiong et al., Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 13(1), 4564 (2022). https://doi.org/10.1038/s41467-022-32361-6
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U. S. A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
C. Qi, C. Luo, Y. Tao, W. Lv, C. Zhang et al., Capillary shrinkage of graphene oxide hydrogels. Sci. China Mater. 63(10), 1870–1877 (2020). https://doi.org/10.1007/s40843-019-1227-7
S. Wan, L. Jiang, Q. Cheng, Design principles of high-performance graphene films: interfaces and alignment. Matter 3(3), 696–707 (2020). https://doi.org/10.1016/j.matt.2020.06.023
Y. Tao, X. Xie, W. Lv, D.-M. Tang, D. Kong et al., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013). https://doi.org/10.1038/srep02975
J. Zhong, W. Sun, Q. Wei, X. Qian, H.-M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
S. Ni, J. Sheng, C. Zhang, X. Wu, C. Yang et al., Dendrite-free lithium deposition and stripping regulated by aligned microchannels for stable lithium metal batteries. Adv. Funct. Mater. 32(21), 2200682 (2022). https://doi.org/10.1002/adfm.202200682
Y. Li, Q. Cheng, Discovery and elimination strategies of voids in two-dimensional carbon nanocomposites. Acc. Mater. Res. 5(3), 358–370 (2024). https://doi.org/10.1021/accountsmr.3c00255
K. Huang, S. Pei, Q. Wei, Q. Zhang, J. Guo et al., Highly thermally conductive and flexible thermal interface materials with aligned graphene Lamella frameworks. ACS Nano 18(34), 23468–23476 (2024). https://doi.org/10.1021/acsnano.4c06952
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), e1907411 (2020). https://doi.org/10.1002/adma.201907411
S. Yang, W. Huang, Z. Lin, Z. Chen, R. Yang et al., Janus MXene film with gradient structure for highly efficient terahertz and infrared electromagnetic absorption. Nano Res. 18(1), 94907041 (2025). https://doi.org/10.26599/nr.2025.94907041
R. Yang, Q. Hu, S. Yang, Z. Zeng, H. Zhang et al., Anchoring oxidized MXene nanosheets on porous carbon nanotube sponge for enhancing ion transport and pseudocapacitive performance. ACS Appl. Mater. Interfaces 14(37), 41997–42006 (2022). https://doi.org/10.1021/acsami.2c10659
S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10(44), 23570–23579 (2022). https://doi.org/10.1039/d2ta06805b
Q. Zhang, R. Fan, W. Cheng, P. Ji, J. Sheng et al., Synthesis of large-area MXenes with high yields through power-focused delamination utilizing Vortex kinetic energy. Adv. Sci. 9(28), e2202748 (2022). https://doi.org/10.1002/advs.202202748
M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
W. Minkina, Theoretical basics of radiant heat transfer – practical examples of calculation for the infrared (IR) used in infrared thermography measurements. Quant. InfraRed Thermogr. J. 18, 269 (2021). https://doi.org/10.1080/17686733.2020.1738164
L. Nyman, J. Frolec, M. Pudas, T. Králík, V. Musilová et al., Low-emittance copper-coating system using atomic-layer-deposited aluminum oxide. Thin Solid Films 749, 139179 (2022). https://doi.org/10.1016/j.tsf.2022.139179
M. Han, D. Zhang, A. Singh, T. Hryhorchuk, C. Eugene Shuck et al., Versatility of infrared properties of MXenes. Mater. Today 64, 31–39 (2023). https://doi.org/10.1016/j.mattod.2023.02.024