Synthesis Strategies and Multi-field Applications of Nanoscale High-Entropy Alloys
Corresponding Author: Guanbin Gao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 283
Abstract
Alloying strategies have proven effective in enhancing the properties of metallic materials. However, conventional alloying strategies face significant limitations in preparing nanoscale multi-alloys and continuous optimizing surface-active sites. High-entropy alloys (HEAs) display a broader spectrum of unique properties due to their complex electron distribution and atomic-level heterogeneity arising from the stochastic mixing of multiple elements, which provides a diverse array of binding sites and almost continuous distribution of binding energies. This review aims to summarize recent research advancements in synthesis strategies and multi-field applications of nanoscale HEAs. It emphasizes several commonly employed synthesis strategies and significant challenges in synthesizing nanoscale HEAs. Finally, we present a comprehensive analysis of the advantages of HEAs for multi-field applications, emphasizing significant application trends related to nanosizing and multidimensionalization to develop more efficient nanoscale HEAs.
Highlights:
1 The comprehensive overview of the synthesis of nanoscale high-entropy alloys and the advantages over conventional alloys.
2 The comprehensive overview of the multi-field applications of nanoscale high-entropy alloys and recent cutting-edge research advances.
3 The comprehensively analyses of the challenges and opportunities in high-entropy alloy development and emphasizes the key application trends in nanosizing and multidimensionalization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Fu, Y. Jiang, M. Zhang, Z. Zhong, Z. Liang et al., High-entropy rare earth materials: synthesis, application and outlook. Chem. Soc. Rev. 53(4), 2211–2247 (2024). https://doi.org/10.1039/D2CS01030E
- J.W. Hong, Y. Kim, D.H. Wi, S. Lee, S.U. Lee et al., Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem. Int. Ed. 55(8), 2753–2758 (2016). https://doi.org/10.1002/anie.201510460
- N. Yang, Z. Zhang, B. Chen, Y. Huang, J. Chen et al., Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 29(29), 1700769 (2017). https://doi.org/10.1002/adma.201700769
- H. Zhao, D. Zhang, Y. Yuan, X. Wu, S. Li et al., Rapid and large-scale synthesis of ultra-small immiscible alloy supported catalysts. Appl. Catal. B Environ. 304, 120916 (2022). https://doi.org/10.1016/j.apcatb.2021.120916
- J. Zhang, J. Le, Y. Dong, L. Bu, Y. Zhang et al., Face-centered cubic structured RuCu hollow urchin-like nanospheres enable remarkable hydrogen evolution catalysis. Sci. China Chem. 65(1), 87–95 (2022). https://doi.org/10.1007/s11426-021-1112-2
- J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
- B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
- J. Yan, S. Yin, M. Asta, R.O. Ritchie, J. Ding et al., Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanops. Nat. Commun. 13(1), 2789 (2022). https://doi.org/10.1038/s41467-022-30524-z
- X. Huang, G. Yang, S. Li, H. Wang, Y. Cao et al., Noble-metal-based high-entropy-alloy nanops for electrocatalysis. J. Energy Chem. 68, 721–751 (2022). https://doi.org/10.1016/j.jechem.2021.12.026
- T. Löffler, A. Ludwig, J. Rossmeisl, W. Schuhmann, What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 60(52), 26894–26903 (2021). https://doi.org/10.1002/anie.202109212
- T. Ahmad, S. Liu, M. Sajid, K. Li, M. Ali et al., Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res. Energy 1, e9120021 (2022). https://doi.org/10.26599/nre.2022.9120021
- E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4
- F. Waag, Y. Li, A.R. Ziefuß, E. Bertin, M. Kamp et al., Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanops. RSC Adv. 9(32), 18547–18558 (2019). https://doi.org/10.1039/c9ra03254a
- T. Xiang, P. Du, Z. Cai, K. Li, W. Bao et al., Phase-tunable equiatomic and non-equiatomic Ti-Zr-Nb-Ta high-entropy alloys with ultrahigh strength for metallic biomaterials. J. Mater. Sci. Technol. 117, 196–206 (2022). https://doi.org/10.1016/j.jmst.2021.12.014
- S. Daryoush, H. Mirzadeh, A. Ataie, Amorphization, mechano-crystallization, and crystallization kinetics of mechanically alloyed AlFeCuZnTi high-entropy alloys. Mater. Lett. 307, 131098 (2022). https://doi.org/10.1016/j.matlet.2021.131098
- J. Yang, L. Jiang, Z. Liu, Z. Tang, A. Wu, Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance. J. Mater. Sci. Technol. 113, 61–70 (2022). https://doi.org/10.1016/j.jmst.2021.09.025
- D. Kumar, Recent advances in tribology of high entropy alloys: a critical review. Prog. Mater. Sci. 136, 101106 (2023). https://doi.org/10.1016/j.pmatsci.2023.101106
- J. Duan, M. Wang, R. Huang, J. Miao, Y. Lu et al., A novel high-entropy alloy with an exceptional combination of soft magnetic properties and corrosion resistance. Sci. China Mater. 66(2), 772–779 (2023). https://doi.org/10.1007/s40843-022-2171-5
- Z.W. Chen, J. Li, P. Ou, J.E. Huang, Z. Wen et al., Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 15(1), 359 (2024). https://doi.org/10.1038/s41467-023-44261-4
- Y. Ai, M.-Q. He, H. Sun, X. Jia, L. Wu et al., Ultra-small high-entropy alloy nanops: efficient nanozyme for enhancing tumor photothermal therapy. Adv. Mater. 35(23), 2302335 (2023). https://doi.org/10.1002/adma.202302335
- M.K. Plenge, J.K. Pedersen, V.A. Mints, M. Arenz, J. Rossmeisl, Following paths of maximum catalytic activity in the composition space of high-entropy alloys. Adv. Energy Mater. 13(2), 2202962 (2023). https://doi.org/10.1002/aenm.202202962
- G. Cao, J. Liang, Z. Guo, K. Yang, G. Wang et al., Liquid metal for high-entropy alloy nanops synthesis. Nature 619(7968), 73–77 (2023). https://doi.org/10.1038/s41586-023-06082-9
- J.-H. Cha, S.-H. Cho, D.-H. Kim, D. Jeon, S. Park et al., Flash-thermal shock synthesis of high-entropy alloys toward high-performance water splitting. Adv. Mater. 35(46), e2305222 (2023). https://doi.org/10.1002/adma.202305222
- Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao et al., High-entropy nanops: synthesis-structure-property relationships and data-driven discovery. Science 376(6589), 3103 (2022). https://doi.org/10.1126/science.abn3103
- H. Shi, X.-Y. Sun, Y. Liu, S.-P. Zeng, Q.-H. Zhang et al., Multicomponent intermetallic nanops on hierarchical metal network as versatile electrocatalysts for highly efficient water splitting. Adv. Funct. Mater. 33(19), 2214412 (2023). https://doi.org/10.1002/adfm.202214412
- J. Johny, Y. Li, M. Kamp, O. Prymak, S.-X. Liang et al., Laser-generated high entropy metallic glass nanops as bifunctional electrocatalysts. Nano Res. 15(6), 4807–4819 (2022). https://doi.org/10.1007/s12274-021-3804-2
- T. Zhang, L. Zhao, H. Ma, S. Huang, L. You et al., The phase transition between decagonal quasicrystal and (1/0, 2/1) approximant in Al20Si20Mn20Fe20Ga20 high entropy quasicrystal alloy. J. Alloys Compd. 910, 164867 (2022). https://doi.org/10.1016/j.jallcom.2022.164867
- P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li-O2 batteries. Small 19(15), 2206742 (2023). https://doi.org/10.1002/smll.202206742
- A.A.H. Tajuddin, M. Wakisaka, T. Ohto, Y. Yu, H. Fukushima et al., Corrosion-resistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media. Adv. Mater. 35(3), 2207466 (2023). https://doi.org/10.1002/adma.202207466
- J. Gu, F. Duan, S. Liu, W. Cha, J. Lu, Phase engineering of nanostructural metallic materials: classification, structures, and applications. Chem. Rev. 124(3), 1247–1287 (2024). https://doi.org/10.1021/acs.chemrev.3c00514
- H. Liu, R. Jia, C. Qin, Q. Yang, Z. Tang et al., Anti-CO poisoning FePtRh nanoflowers with Rh-rich core and Fe-rich shell boost methanol oxidation electrocatalysis. Adv. Funct. Mater. 33(7), 2210626 (2023). https://doi.org/10.1002/adfm.202210626
- S. Zhao, Z. Li, High entropy alloys for extreme load-bearing applications. Mater. Lab 1, 220035 (2022). https://doi.org/10.54227/mlab.20220035
- B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui et al., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 95, 106962 (2022). https://doi.org/10.1016/j.nanoen.2022.106962
- Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33(34), e2101342 (2021). https://doi.org/10.1002/adma.202101342
- Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18(4), 2107265 (2022). https://doi.org/10.1002/smll.202107265
- S. Wu, Y. Chen, W. Kang, X. Cai, L. Zhou, Hydrogen storage properties of MgTiVZrNb high-entropy alloy and its catalytic effect upon hydrogen storage in Mg. Int. J. Hydrog. Energy 50, 1113–1128 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.022
- B. Liu, K. Li, Y. Luo, L. Gao, G. Duan, Sulfur spillover driven by charge transfer between AuPd alloys and SnO2 allows high selectivity for dimethyl disulfide gas sensing. Chem. Eng. J. 420, 129881 (2021). https://doi.org/10.1016/j.cej.2021.129881
- R. Tu, K. Liang, Y. Sun, Y. Wu, W. Lv et al., Ultra-dilute high-entropy alloy catalyst with core-shell structure for high-active hydrogenation of furfural to furfuryl alcohol at mild temperature. Chem. Eng. J. 452, 139526 (2023). https://doi.org/10.1016/j.cej.2022.139526
- X. Fu, J. Zhang, S. Zhan, F. Xia, C. Wang et al., High-entropy alloy nanosheets for fine-tuning hydrogen evolution. ACS Catal. 12(19), 11955–11959 (2022). https://doi.org/10.1021/acscatal.2c02778
- Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
- X. Chang, M. Zeng, K. Liu, L. Fu, Phase engineering of high-entropy alloys. Adv. Mater. 32(14), 1907226 (2020). https://doi.org/10.1002/adma.201907226
- X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A 9(2), 663–701 (2021). https://doi.org/10.1039/d0ta09601f
- F. Liu, P. Liaw, Y. Zhang, Recent progress with BCC-structured high-entropy alloys. Metals 12(3), 501 (2022). https://doi.org/10.3390/met12030501
- Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros et al., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14(5), 2883–2905 (2021). https://doi.org/10.1039/d1ee00505g
- F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61(7), 2628–2638 (2013). https://doi.org/10.1016/j.actamat.2013.01.042
- Y. Zhai, X. Ren, B. Wang, S. Liu, High-entropy catalyst: a novel platform for electrochemical water splitting. Adv. Funct. Mater. 32(47), 2207536 (2022). https://doi.org/10.1002/adfm.202207536
- M. Li, F. Lin, S. Zhang, R. Zhao, L. Tao et al., High-entropy alloy electrocatalysts go to (sub-) nanoscale. Sci. Adv. 10(23), eadn2877 (2024). https://doi.org/10.1126/sciadv.adn2877
- H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36(17), e2305453 (2024). https://doi.org/10.1002/adma.202305453
- C. Deng, T. Wang, P. Wu, W. Zhu, S. Dai, High entropy materials for catalysis: a critical review of fundamental concepts and applications. Nano Energy 120, 109153 (2024). https://doi.org/10.1016/j.nanoen.2023.109153
- Z. Luo, W. Gao, Q. Jiang, Determinants of vacancy formation and migration in high-entropy alloys. Sci. Adv. 11(1), eadr4697 (2025). https://doi.org/10.1126/sciadv.adr4697
- L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao et al., Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015). https://doi.org/10.1038/ncomms6964
- K. Wang, W. Hua, X. Huang, D. Stenzel, J. Wang et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14(1), 1487 (2023). https://doi.org/10.1038/s41467-023-37034-6
- B.X. Cao, C. Wang, T. Yang, C.T. Liu, Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scr. Mater. 187, 250–255 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.008
- J. Wang, B. Zhang, W. Guo, L. Wang, J. Chen et al., Toward electrocatalytic methanol oxidation reaction: longstanding debates and emerging catalysts. Adv. Mater. 35(26), e2211099 (2023). https://doi.org/10.1002/adma.202211099
- M.V. Kante, M.L. Weber, S. Ni, I.C.G. van den Bosch, E. van der Minne et al., A high-entropy oxide as high-activity electrocatalyst for water oxidation. ACS Nano 17(6), 5329–5339 (2023). https://doi.org/10.1021/acsnano.2c08096
- Y. Ai, H. Sun, Z. Gao, C. Wang, L. Guan et al., Dual enzyme mimics based on metal–ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy. Adv. Funct. Mater. 31(40), 2103581 (2021). https://doi.org/10.1002/adfm.202103581
- L. Wang, H. Liu, J. Zhuang, D. Wang, Small-scale big science: from nano- to atomically dispersed catalytic materials. Small Sci. 2(11), 2200036 (2022). https://doi.org/10.1002/smsc.202200036
- Y. Wang, W. Luo, S. Gong, L. Luo, Y. Li et al., Synthesis of high-entropy-alloy nanops by a step-alloying strategy as a superior multifunctional electrocatalyst. Adv. Mater. 35(36), 2302499 (2023). https://doi.org/10.1002/adma.202302499
- M. Li, C. Huang, H. Yang, Y. Wang, X. Song et al., Programmable synthesis of high-entropy nanoalloys for efficient ethanol oxidation reaction. ACS Nano 17(14), 13659–13671 (2023). https://doi.org/10.1021/acsnano.3c02762
- H. Li, H. Zhu, S. Zhang, N. Zhang, M. Du et al., Nano high-entropy materials: synthesis strategies and catalytic applications. Small Struct. 1(2), 2000033 (2020). https://doi.org/10.1002/sstr.202000033
- W. Liao, F. Qing, Q. Liu, R. Wu, C. Zhou et al., Carbothermal shock synthesis of lattice oxygen-mediated high-entropy FeCoNiCuMo-O electrocatalyst with a fast kinetic, high efficiency, and stable oxygen evolution reaction. Nano Lett. 25(4), 1575–1583 (2025). https://doi.org/10.1021/acs.nanolett.4c05658
- Y. Sun, S. Dai, High-entropy materials for catalysis: a new frontier. Sci. Adv. 7(20), eabg1600 (2021). https://doi.org/10.1126/sciadv.abg1600
- S.A. Lee, J. Bu, J. Lee, H.W. Jang, High-entropy nanomaterials for advanced electrocatalysis. Small Sci. 3(5), 2200109 (2023). https://doi.org/10.1002/smsc.202200109
- W. Al Zoubi, R.A.K. Putri, M.R. Abukhadra, Y.G. Ko, Recent experimental and theoretical advances in the design and science of high-entropy alloy nanops. Nano Energy 110, 108362 (2023). https://doi.org/10.1016/j.nanoen.2023.108362
- Y. Liao, Y. Li, L. Ji, X. Liu, X. Zhao et al., Confined high-entropy-alloy nanops within graphitic shells for synergistically improved photothermal conversion. Acta Mater. 240, 118338 (2022). https://doi.org/10.1016/j.actamat.2022.118338
- Y. Li, Y. Ma, Y. Liao, L. Ji, R. Zhao et al., High-entropy-alloy-nanops enabled wood evaporator for efficient photothermal conversion and sustainable solar desalination. Adv. Energy Mater. 12(47), 2203057 (2022). https://doi.org/10.1002/aenm.202203057
- Y. Li, Y. Liao, J. Zhang, E. Huang, L. Ji et al., High-entropy-alloy nanops with enhanced interband transitions for efficient photothermal conversion. Angew. Chem. Int. Ed. 60(52), 27113–27118 (2021). https://doi.org/10.1002/anie.202112520
- Y. Liao, Y. Li, R. Zhao, J. Zhang, L. Zhao et al., High-entropy-alloy nanops with 21 ultra-mixed elements for efficient photothermal conversion. Natl. Sci. Rev. 9(6), nwac041 (2022). https://doi.org/10.1093/nsr/nwac041
- K. Kusada, M. Mukoyoshi, D. Wu, H. Kitagawa, Chemical synthesis, characterization, and properties of multi-element nanops. Angew. Chem. Int. Ed. 61(48), e202209616 (2022). https://doi.org/10.1002/anie.202209616
- Y. Nakaya, E. Hayashida, H. Asakura, S. Takakusagi, S. Yasumura et al., High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 144(35), 15944–15953 (2022). https://doi.org/10.1021/jacs.2c01200
- H.-K. Lin, Y.-H. Cheng, G.-Y. Li, Y.-C. Chen, P. Bazarnik et al., Study on the surface modification of nanostructured Ti alloys and coarse-grained Ti alloys. Metals 12(6), 948 (2022). https://doi.org/10.3390/met12060948
- A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005). https://doi.org/10.2320/matertrans.46.2817
- H. Xie, S. Chen, J. Liang, T. Wang, Z. Hou et al., Weakening intermediate bindings on CuPd/Pd core/shell nanops to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions. Adv. Funct. Mater. 31(26), 2100883 (2021). https://doi.org/10.1002/adfm.202100883
- P.-F. Yin, M. Zhou, J. Chen, C. Tan, G. Liu et al., Synthesis of palladium-based Crystalline@Amorphous core–shell nanoplates for highly efficient ethanol oxidation. Adv. Mater. 32(21), 2000482 (2020). https://doi.org/10.1002/adma.202000482
- X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), 2002853 (2020). https://doi.org/10.1002/adma.202002853
- M. Cui, C. Yang, S. Hwang, M. Yang, S. Overa et al., Multi-principal elemental intermetallic nanops synthesized via a disorder-to-order transition. Sci. Adv. 8(4), eabm4322 (2022). https://doi.org/10.1126/sciadv.abm4322
- G. Zhu, Y. Jiang, H. Yang, H. Wang, Y. Fang et al., Constructing structurally ordered high-entropy alloy nanops on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction. Adv. Mater. 34(15), 2110128 (2022). https://doi.org/10.1002/adma.202110128
- J. Wang, W. Liu, Y. Wang, Y. Guo, M. Liu et al., AgCuInCdZn high-entropy alloy nanops-embedded in porous carbon fibers for long-cycling lithium metal anodes. Chem. Eng. J. 477, 146884 (2023). https://doi.org/10.1016/j.cej.2023.146884
- H. Guo, Z. Guo, K. Chu, W. Zong, H. Zhu et al., Polymer-confined pyrolysis promotes the formation of ultrafine single-phase high-entropy alloys: a promising electrocatalyst for oxidation of nitrogen. Adv. Funct. Mater. 33(51), 2308229 (2023). https://doi.org/10.1002/adfm.202308229
- Y.-H. Liu, C.-J. Hsieh, L.-C. Hsu, K.-H. Lin, Y.-C. Hsiao et al., Toward controllable and predictable synthesis of high-entropy alloy nanocrystals. Sci. Adv. 9(19), eadf9931 (2023). https://doi.org/10.1126/sciadv.adf9931
- C.-Y. Wu, Y.-C. Hsiao, Y. Chen, K.-H. Lin, T.-J. Lee et al., A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. Sci. Adv. 10(30), eadl3693 (2024). https://doi.org/10.1126/sciadv.adl3693
- J. Hao, Z. Zhuang, K. Cao, G. Gao, C. Wang et al., Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 13(1), 2662 (2022). https://doi.org/10.1038/s41467-022-30379-4
- D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura et al., Platinum-group-metal high-entropy-alloy nanops. J. Am. Chem. Soc. 142(32), 13833–13838 (2020). https://doi.org/10.1021/jacs.0c04807
- H. Zhu, S. Sun, J. Hao, Z. Zhuang, S. Zhang et al., A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16(2), 619–628 (2023). https://doi.org/10.1039/D2EE03185J
- S.L.A. Bueno, A. Leonardi, N. Kar, K. Chatterjee, X. Zhan et al., Quinary, senary, and septenary high entropy alloy nanop catalysts from Core@Shell nanops and the significance of intrap heterogeneity. ACS Nano 16(11), 18873–18885 (2022). https://doi.org/10.1021/acsnano.2c07787
- S. Saxena, T.S. Khan, F. Jalid, M. Ramteke, M. Ali Haider, In silico high throughput screening of bimetallic and single atom alloys using machine learning and ab initio microkinetic modelling. J. Mater. Chem. A 8(1), 107–123 (2020). https://doi.org/10.1039/C9TA07651D
- Z. Lu, Z.W. Chen, C.V. Singh, Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 3(4), 1318–1333 (2020). https://doi.org/10.1016/j.matt.2020.07.029
- J. Zhang, C. Wang, S. Huang, X. Xiang, Y. Xiong et al., Design high-entropy electrocatalyst via interpretable deep graph attention learning. Joule 7(8), 1832–1851 (2023). https://doi.org/10.1016/j.joule.2023.06.003
- M.J.R. Haché, J. Tam, U. Erb, Y. Zou, Electrodeposited nanocrystalline medium-entropy alloys–An effective strategy of producing stronger and more stable nanomaterials. J. Alloys Compd. 899, 163233 (2022). https://doi.org/10.1016/j.jallcom.2021.163233
- C.-Z. Yao, P. Zhang, M. Liu, G.-R. Li, J.-Q. Ye et al., Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53(28), 8359–8365 (2008). https://doi.org/10.1016/j.electacta.2008.06.036
- J. Sure, D.S.M. Vishnu, C. Schwandt, Direct electrochemical synthesis of high-entropy alloys from metal oxides. Appl. Mater. Today 9, 111–121 (2017). https://doi.org/10.1016/j.apmt.2017.05.009
- F. Yoosefan, A. Ashrafi, S.M. Monir Vaghefi, I. Constantin, Synthesis of CoCrFeMnNi high entropy alloy thin films by pulse electrodeposition: part 1: effect of pulse electrodeposition parameters. Met. Mater. Int. 26(8), 1262–1269 (2019). https://doi.org/10.1007/s12540-019-00404-1
- F. Yoosefan, A. Ashrafi, S.M. Monir Vaghefi, Characterization of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films synthesized by pulse electrodeposition: part 2: effect of pulse electrodeposition parameters on the wettability and corrosion resistance. Met. Mater. Int. 27(1), 106–117 (2021). https://doi.org/10.1007/s12540-019-00584-w
- D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen et al., The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J. Mater. Chem. A 9(2), 889–893 (2021). https://doi.org/10.1039/D0TA10574K
- G.R. Dey, C.R. McCormick, S.S. Soliman, A.J. Darling, R.E. Schaak, Chemical insights into the formation of colloidal high entropy alloy nanops. ACS Nano 17(6), 5943–5955 (2023). https://doi.org/10.1021/acsnano.3c00176
- A. Aliyu, C. Srivastava, Phase constitution, surface chemistry and corrosion behavior of electrodeposited MnFeCoNiCu high entropy alloy-graphene oxide composite coatings. Surf. Coat. Technol. 429, 127943 (2022). https://doi.org/10.1016/j.surfcoat.2021.127943
- H. Luo, L. Li, F. Lin, Q. Zhang, K. Wang et al., Sub-2 nm microstrained high-entropy-alloy nanops boost hydrogen electrocatalysis. Adv. Mater. 36(32), e2403674 (2024). https://doi.org/10.1002/adma.202403674
- G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143(41), 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
- Z. Zhang, P. Yu, Z. Liu, K. Liu, Z. Mu et al., Off-equilibrium hydrothermal synthesis of high-entropy alloy nanops. J. Am. Chem. Soc. 147(11), 9640–9652 (2025). https://doi.org/10.1021/jacs.4c17756
- B. Niu, F. Zhang, H. Ping, N. Li, J. Zhou et al., Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci. Rep. 7, 3421 (2017). https://doi.org/10.1038/s41598-017-03644-6
- A.S. Rogachev, S.G. Vadchenko, N.A. Kochetov, D.Y. Kovalev, I.D. Kovalev et al., Combustion synthesis of TiC-based ceramic-metal composites with high entropy alloy binder. J. Eur. Ceram. Soc. 40(7), 2527–2532 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.059
- K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi et al., Hydrogen spillover-driven synthesis of high-entropy alloy nanops as a robust catalyst for CO2 hydrogenation. Nat. Commun. 12(1), 3884 (2021). https://doi.org/10.1038/s41467-021-24228-z
- Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359(6383), 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
- J.-Y. Song, C. Kim, M. Kim, K.M. Cho, I. Gereige et al., Generation of high-density nanops in the carbothermal shock method. Sci. Adv. 7(48), eabk2984 (2021). https://doi.org/10.1126/sciadv.abk2984
- M. Kheradmandfard, H. Minouei, N. Tsvetkov, A.K. Vayghan, S.F. Kashani-Bozorg et al., Ultrafast green microwave-assisted synthesis of high-entropy oxide nanops for Li-ion battery applications. Mater. Chem. Phys. 262, 124265 (2021). https://doi.org/10.1016/j.matchemphys.2021.124265
- R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field. Nature 399(6737), 668–670 (1999). https://doi.org/10.1038/21390
- H. Qiao, M.T. Saray, X. Wang, S. Xu, G. Chen et al., Scalable synthesis of high entropy alloy nanops by microwave heating. ACS Nano 15(9), 14928–14937 (2021). https://doi.org/10.1021/acsnano.1c05113
- B. Wang, W. Liu, Y. Leng, X. Yu, C. Wang et al., Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting. iScience 26(4), 106326 (2023). https://doi.org/10.1016/j.isci.2023.106326
- B. Wang, C. Wang, X. Yu, Y. Cao, L. Gao et al., General synthesis of high-entropy alloy and ceramic nanops in nanoseconds. Nat. Synth. 1(2), 138–146 (2022). https://doi.org/10.1038/s44160-021-00004-1
- T. Yu, Y. Zhang, Y. Hu, K. Hu, X. Lin et al., Twelve-component free-standing nanoporous high-entropy alloys for multifunctional electrocatalysis. ACS Mater. Lett. 4(1), 181–189 (2022). https://doi.org/10.1021/acsmaterialslett.1c00762
- S. Li, X. Tang, H. Jia, H. Li, G. Xie et al., Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 383, 164–171 (2020). https://doi.org/10.1016/j.jcat.2020.01.024
- H. Liu, H. Qin, J. Kang, L. Ma, G. Chen et al., A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting. Chem. Eng. J. 435, 134898 (2022). https://doi.org/10.1016/j.cej.2022.134898
- L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15(40), e1902730 (2019). https://doi.org/10.1002/smll.201902730
- Y. Ren, Y. Zhang, Q. Zheng, L. Wang, W. Jiang, Integrating large specific surface area and tunable magnetic loss in Fe@C composites for lightweight and high-efficiency electromagnetic wave absorption. Carbon 206, 226–236 (2023). https://doi.org/10.1016/j.carbon.2023.02.048
- H. Ge, L. Zheng, G. Yuan, W. Shi, J. Liu et al., Polyoxometallate cluster induced high-entropy oxide sub-1 nm nanosheets as photoelectrocatalysts for Zn-air batteries. J. Am. Chem. Soc. 146(15), 10735–10744 (2024). https://doi.org/10.1021/jacs.4c00652
- J. Ai, S. Liu, Y. Zhang, Y. Han, B. Liu et al., 3D-printed high-entropy alloy nanoarchitectures. Small 21(8), 2409900 (2025). https://doi.org/10.1002/smll.202409900
- G. Cao, S. Yang, J.-C. Ren, W. Liu, Electronic descriptors for designing high-entropy alloy electrocatalysts by leveraging local chemical environments. Nat. Commun. 16(1), 1251 (2025). https://doi.org/10.1038/s41467-025-56421-9
- Z. Lu, W. Sun, P. Cai, L. Fan, K. Chen et al., High-entropy alloy catalysts for advanced hydrogen-production zinc-based batteries. Energy Environ. Sci. 18(6), 2918–2930 (2025). https://doi.org/10.1039/d4ee05500d
- Y. Fu, J. Li, H. Luo, C. Du, X. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J. Mater. Sci. Technol. 80, 217–233 (2021). https://doi.org/10.1016/j.jmst.2020.11.044
- S. Yang, X. Sun, Y. Ning, Y. Yuan, B. Luo et al., Effectively tuning electromagnetic absorption of carbon-based nanocomposites by phase transition. Carbon 190, 47–56 (2022). https://doi.org/10.1016/j.carbon.2021.12.091
- S. Wang, Q. Liu, S. Li, F. Huang, H. Zhang, Joule-heating-driven synthesis of a honeycomb-like porous carbon nanofiber/high entropy alloy composite as an ultralightweight electromagnetic wave absorber. ACS Nano 18(6), 5040–5050 (2024). https://doi.org/10.1021/acsnano.3c11408
- J. Ma, B. Zhao, H. Xiang, F.-Z. Dai, Y. Liu et al., High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption. J. Adv. Ceram. 11(5), 754–768 (2022). https://doi.org/10.1007/s40145-022-0569-3
- F. Gu, W. Wang, H. Meng, Y. Liu, L. Zhuang et al., Lattice distortion boosted exceptional electromagnetic wave absorption in high-entropy diborides. Matter 8(3), 102004 (2025). https://doi.org/10.1016/j.matt.2025.102004
- A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018). https://doi.org/10.1038/s41467-018-05774-5
- C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
- B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang et al., High-entropy enhanced capacitive energy storage. Nat. Mater. 21(9), 1074–1080 (2022). https://doi.org/10.1038/s41563-022-01274-6
- J. Chen, H. Huang, T. Xu, Y. Lv, B. Liu et al., Enhancement of vanadium addition on hydrogen storage properties of high entropy alloys TiZrFeMnCrVx. Int. J. Hydrog. Energy 50, 1223–1233 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.121
- J. Hu, J. Zhang, H. Xiao, L. Xie, G. Sun et al., A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb. Int. J. Hydrog. Energy 46(40), 21050–21058 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.200
- J. Hu, J. Zhang, M. Li, S. Zhang, H. Xiao et al., The origin of anomalous hydrogen occupation in high entropy alloys. J. Mater. Chem. A 10(13), 7228–7237 (2022). https://doi.org/10.1039/d1ta10649j
- J.W. Zhang, P.P. Zhou, Z.M. Cao, P.C. Li, J.T. Hu et al., Composition and temperature influence on hydrogenation performance of TiZrHfMoxNb2–x high entropy alloys. J. Mater. Chem. A 11(38), 20623–20635 (2023). https://doi.org/10.1039/D3TA01990J
- V.R. Naganaboina, M. Anandkumar, A.S. Deshpande, S.G. Singh, Single-phase high-entropy oxide-based chemiresistor: toward selective and sensitive detection of methane gas for real-time applications. Sens. Actuat. B Chem. 357, 131426 (2022). https://doi.org/10.1016/j.snb.2022.131426
- R. Shaik, R.K. Kampara, A. Kumar, C.S. Sharma, M. Kumar, Metal oxide nanofibers based chemiresistive H2S gas sensors. Coord. Chem. Rev. 471, 214752 (2022). https://doi.org/10.1016/j.ccr.2022.214752
- K.M.B. Urs, N.K. Katiyar, R. Kumar, K. Biswas, A.K. Singh et al., Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanop-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale 12(22), 11830–11841 (2020). https://doi.org/10.1039/D0NR02177F
- M.T. Banizi, M. Khakbiz, S. Shakibania, E. Amiri, F. Naserian, Functionalized high entropy alloys with ZIF-8 and LDH nanolayers for next-generation drug eluting medical implants. J. Alloys Compd. 997, 174883 (2024). https://doi.org/10.1016/j.jallcom.2024.174883
- Y. Sun, W. Zhang, Q. Zhang, Y. Li, L. Gu et al., A general approach to high-entropy metallic nanowire electrocatalysts. Matter 6(1), 193–205 (2023). https://doi.org/10.1016/j.matt.2022.09.023
- P. Zhao, Q. Cao, W. Yi, X. Hao, J. Li et al., Facile and general method to synthesize Pt-based high-entropy-alloy nanops. ACS Nano 16(9), 14017–14028 (2022). https://doi.org/10.1021/acsnano.2c03818
- X. Yang, J. Feng, Y. Li, W. Zhu, Y. Pan et al., PdMoPtCoNi high entropy nanoalloy with d electron self-complementation-induced multisite synergistic effect for efficient nanozyme catalysis. Adv. Sci. 11(38), 2406149 (2024). https://doi.org/10.1002/advs.202406149
- X. He, Y. Qian, C. Wu, J. Feng, X. Sun et al., Entropy-mediated high-entropy MXenes nanotherapeutics: NIR-II-enhanced intrinsic oxidase mimic activity to combat methicillin-resistant Staphylococcus aureus infection. Adv. Mater. 35(26), 2211432 (2023). https://doi.org/10.1002/adma.202211432
- H. Li, J. Lai, Z. Li, L. Wang, Multi-sites electrocatalysis in high-entropy alloys. Adv. Funct. Mater. 31(47), 2106715 (2021). https://doi.org/10.1002/adfm.202106715
- D. Zhang, H. Zhao, X. Wu, Y. Deng, Z. Wang et al., Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys. Adv. Funct. Mater. 31(9), 2006939 (2021). https://doi.org/10.1002/adfm.202006939
- Z. Li, L. Zhai, Y. Ge, Z. Huang, Z. Shi et al., Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev. 9(5), 142 (2021). https://doi.org/10.1093/nsr/nwab142
- H. Cai, H. Yang, S. He, D. Wan, Y. Kong et al., Size-adjustable high-entropy alloy nanops as an efficient platform for electrocatalysis. Angew. Chem. Int. Ed. 64(13), e202423765 (2025). https://doi.org/10.1002/anie.202423765
- H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9(42), eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
- L. Zhang, P. Jin, Z. Wu, B. Zhou, J. Jiang et al., CuO/CoO bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled cathodic ammonia production. Energy Environ. Mater. 7(5), e12725 (2024). https://doi.org/10.1002/eem2.12725
- Y. Zhang, J. Liu, Y. Xu, C. Xie, S. Wang et al., Design and regulation of defective electrocatalysts. Chem. Soc. Rev. 53(21), 10620–10659 (2024). https://doi.org/10.1039/d4cs00217b
- M. Wei, Y. Sun, J. Zhang, F. Ai, S. Xi et al., High-entropy alloy nanocrystal assembled by nanosheets with d–d electron interaction for hydrogen evolution reaction. Energy Environ. Sci. 16(9), 4009–4019 (2023). https://doi.org/10.1039/D3EE01929B
- H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang et al., Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11(1), 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9
- G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018). https://doi.org/10.1016/j.electacta.2018.05.035
- Y. Wang, Y. Zhang, P. Xing, X. Li, Q. Du et al., Self-encapsulation of high-entropy alloy nanops inside carbonized wood for highly durable electrocatalysis. Adv. Mater. 36(28), 2402391 (2024). https://doi.org/10.1002/adma.202402391
- W. Shi, H. Liu, Z. Li, C. Li, J. Zhou et al., High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat 2(2), 186–196 (2022). https://doi.org/10.1002/sus2.56
- K. Huang, J. Xia, Y. Lu, B. Zhang, W. Shi et al., Self-reconstructed spinel surface structure enabling the long-term stable hydrogen evolution reaction/oxygen evolution reaction efficiency of FeCoNiRu high-entropy alloyed electrocatalyst. Adv. Sci. 10(14), 2300094 (2023). https://doi.org/10.1002/advs.202300094
- A. Abdelhafiz, B. Wang, A.R. Harutyunyan, J. Li, Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv. Energy Mater. 12(35), 2200742 (2022). https://doi.org/10.1002/aenm.202200742
- Y. Qin, W. Zhang, F. Wang, J. Li, J. Ye et al., Extraordinary p–d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C−C bond cleavage of ethylene glycol electrooxidation. Angew. Chem. 134(16), e202200899 (2022). https://doi.org/10.1002/ange.202200899
- C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng et al., Publisher Correction: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12(1), 7099 (2021). https://doi.org/10.1038/s41467-021-27395-1
- Y. Men, D. Wu, Y. Hu, L. Li, P. Li et al., Understanding alkaline hydrogen oxidation reaction on PdNiRuIrRh high-entropy-alloy by machine learning potential. Angew. Chem. Int. Ed. 62(27), e202217976 (2023). https://doi.org/10.1002/anie.202217976
- X. Zhao, H. Cheng, X. Chen, Q. Zhang, C. Li et al., Multiple metal-nitrogen bonds synergistically boosting the activity and durability of high-entropy alloy electrocatalysts. J. Am. Chem. Soc. 146(5), 3010–3022 (2024). https://doi.org/10.1021/jacs.3c08177
- W. Gong, P. Guo, L. Zhang, R. Fu, M. Yan et al., Atomically dispersed bimetallic single-atom Cu, Fe/NC as pH-universal ORR electrocatalyst. Chem. Eng. J. 507, 160400 (2025). https://doi.org/10.1016/j.cej.2025.160400
- X. Zhou, Y. Ma, Y. Ge, S. Zhu, Y. Cui et al., Preparation of Au@Pd core-shell nanorods with fcc-2H- fcc heterophase for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 144(1), 547–555 (2022). https://doi.org/10.1021/jacs.1c11313
- M. Xie, B. Zhang, Z. Jin, P. Li, G. Yu, Atomically reconstructed palladium metallene by intercalation-induced lattice expansion and amorphization for highly efficient electrocatalysis. ACS Nano 16(9), 13715–13727 (2022). https://doi.org/10.1021/acsnano.2c05190
- H. Li, M. Sun, Y. Pan, J. Xiong, H. Du et al., The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B Environ. 312, 121431 (2022). https://doi.org/10.1016/j.apcatb.2022.121431
- Y. Lv, P. Liu, R. Xue, Q. Guo, J. Ye et al., Cascaded p–d orbital hybridization interaction in ultrathin high-entropy alloy nanowires boosts complete non-CO pathway of methanol oxidation reaction. Adv. Sci. 11(19), 2309813 (2024). https://doi.org/10.1002/advs.202309813
- C. Zhan, L. Bu, H. Sun, X. Huang, Z. Zhu et al., Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 62(3), e202213783 (2023). https://doi.org/10.1002/anie.202213783
- V.-H. Do, J.-M. Lee, Surface engineering for stable electrocatalysis. Chem. Soc. Rev. 53(5), 2693–2737 (2024). https://doi.org/10.1039/d3cs00292f
- Z. Guo, Y. Yu, C. Li, E. Campos dos Santos, T. Wang et al., Deciphering structure-activity relationship towards CO2 electroreduction over SnO2 by a standard research paradigm. Angew. Chem. Int. Ed. 63(12), e202319913 (2024). https://doi.org/10.1002/anie.202319913
- L. Yang, R. He, J. Chai, X. Qi, Q. Xue et al., Synthesis strategies for high entropy nanops. Adv. Mater. 37(1), 2412337 (2025). https://doi.org/10.1002/adma.202412337
- S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
- P. Shao, H.-X. Zhang, Q.-L. Hong, L. Yi, Q.-H. Li et al., Enhancing CO2 electroreduction to ethylene via Copper−Silver tandem catalyst in boron-imidazolate framework nanosheet. Adv. Energy Mater. 13(19), 2300088 (2023). https://doi.org/10.1002/aenm.202300088
- J.K. Pedersen, T.A.A. Batchelor, A. Bagger, J. Rossmeisl, High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 10(3), 2169–2176 (2020). https://doi.org/10.1021/acscatal.9b04343
- L. Jiao, C. Mao, F. Xu, X. Cheng, P. Cui et al., Constructing gold single-atom catalysts on hierarchical nitrogen-doped carbon nanocages for carbon dioxide electroreduction to syngas. Small 20(16), 2305513 (2024). https://doi.org/10.1002/smll.202305513
- Z. Luo, Y. Guo, C. He, Y. Guan, L. Zhang et al., Creating high-entropy single atoms on transition disulfides through substrate-induced redox dynamics for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 136(32), e202405017 (2024). https://doi.org/10.1002/ange.202405017
- Z.W. Chen, Z. Gariepy, L. Chen, X. Yao, A. Anand et al., Machine-learning-driven high-entropy alloy catalyst discovery to circumvent the scaling relation for CO2 reduction reaction. ACS Catal. 12(24), 14864–14871 (2022). https://doi.org/10.1021/acscatal.2c03675
- H. Li, H. Huang, Y. Chen, F. Lai, H. Fu et al., High-entropy alloy aerogels: a new platform for carbon dioxide reduction. Adv. Mater. 35(2), e2209242 (2023). https://doi.org/10.1002/adma.202209242
References
H. Fu, Y. Jiang, M. Zhang, Z. Zhong, Z. Liang et al., High-entropy rare earth materials: synthesis, application and outlook. Chem. Soc. Rev. 53(4), 2211–2247 (2024). https://doi.org/10.1039/D2CS01030E
J.W. Hong, Y. Kim, D.H. Wi, S. Lee, S.U. Lee et al., Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem. Int. Ed. 55(8), 2753–2758 (2016). https://doi.org/10.1002/anie.201510460
N. Yang, Z. Zhang, B. Chen, Y. Huang, J. Chen et al., Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 29(29), 1700769 (2017). https://doi.org/10.1002/adma.201700769
H. Zhao, D. Zhang, Y. Yuan, X. Wu, S. Li et al., Rapid and large-scale synthesis of ultra-small immiscible alloy supported catalysts. Appl. Catal. B Environ. 304, 120916 (2022). https://doi.org/10.1016/j.apcatb.2021.120916
J. Zhang, J. Le, Y. Dong, L. Bu, Y. Zhang et al., Face-centered cubic structured RuCu hollow urchin-like nanospheres enable remarkable hydrogen evolution catalysis. Sci. China Chem. 65(1), 87–95 (2022). https://doi.org/10.1007/s11426-021-1112-2
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
J. Yan, S. Yin, M. Asta, R.O. Ritchie, J. Ding et al., Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanops. Nat. Commun. 13(1), 2789 (2022). https://doi.org/10.1038/s41467-022-30524-z
X. Huang, G. Yang, S. Li, H. Wang, Y. Cao et al., Noble-metal-based high-entropy-alloy nanops for electrocatalysis. J. Energy Chem. 68, 721–751 (2022). https://doi.org/10.1016/j.jechem.2021.12.026
T. Löffler, A. Ludwig, J. Rossmeisl, W. Schuhmann, What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 60(52), 26894–26903 (2021). https://doi.org/10.1002/anie.202109212
T. Ahmad, S. Liu, M. Sajid, K. Li, M. Ali et al., Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res. Energy 1, e9120021 (2022). https://doi.org/10.26599/nre.2022.9120021
E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4
F. Waag, Y. Li, A.R. Ziefuß, E. Bertin, M. Kamp et al., Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanops. RSC Adv. 9(32), 18547–18558 (2019). https://doi.org/10.1039/c9ra03254a
T. Xiang, P. Du, Z. Cai, K. Li, W. Bao et al., Phase-tunable equiatomic and non-equiatomic Ti-Zr-Nb-Ta high-entropy alloys with ultrahigh strength for metallic biomaterials. J. Mater. Sci. Technol. 117, 196–206 (2022). https://doi.org/10.1016/j.jmst.2021.12.014
S. Daryoush, H. Mirzadeh, A. Ataie, Amorphization, mechano-crystallization, and crystallization kinetics of mechanically alloyed AlFeCuZnTi high-entropy alloys. Mater. Lett. 307, 131098 (2022). https://doi.org/10.1016/j.matlet.2021.131098
J. Yang, L. Jiang, Z. Liu, Z. Tang, A. Wu, Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance. J. Mater. Sci. Technol. 113, 61–70 (2022). https://doi.org/10.1016/j.jmst.2021.09.025
D. Kumar, Recent advances in tribology of high entropy alloys: a critical review. Prog. Mater. Sci. 136, 101106 (2023). https://doi.org/10.1016/j.pmatsci.2023.101106
J. Duan, M. Wang, R. Huang, J. Miao, Y. Lu et al., A novel high-entropy alloy with an exceptional combination of soft magnetic properties and corrosion resistance. Sci. China Mater. 66(2), 772–779 (2023). https://doi.org/10.1007/s40843-022-2171-5
Z.W. Chen, J. Li, P. Ou, J.E. Huang, Z. Wen et al., Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 15(1), 359 (2024). https://doi.org/10.1038/s41467-023-44261-4
Y. Ai, M.-Q. He, H. Sun, X. Jia, L. Wu et al., Ultra-small high-entropy alloy nanops: efficient nanozyme for enhancing tumor photothermal therapy. Adv. Mater. 35(23), 2302335 (2023). https://doi.org/10.1002/adma.202302335
M.K. Plenge, J.K. Pedersen, V.A. Mints, M. Arenz, J. Rossmeisl, Following paths of maximum catalytic activity in the composition space of high-entropy alloys. Adv. Energy Mater. 13(2), 2202962 (2023). https://doi.org/10.1002/aenm.202202962
G. Cao, J. Liang, Z. Guo, K. Yang, G. Wang et al., Liquid metal for high-entropy alloy nanops synthesis. Nature 619(7968), 73–77 (2023). https://doi.org/10.1038/s41586-023-06082-9
J.-H. Cha, S.-H. Cho, D.-H. Kim, D. Jeon, S. Park et al., Flash-thermal shock synthesis of high-entropy alloys toward high-performance water splitting. Adv. Mater. 35(46), e2305222 (2023). https://doi.org/10.1002/adma.202305222
Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao et al., High-entropy nanops: synthesis-structure-property relationships and data-driven discovery. Science 376(6589), 3103 (2022). https://doi.org/10.1126/science.abn3103
H. Shi, X.-Y. Sun, Y. Liu, S.-P. Zeng, Q.-H. Zhang et al., Multicomponent intermetallic nanops on hierarchical metal network as versatile electrocatalysts for highly efficient water splitting. Adv. Funct. Mater. 33(19), 2214412 (2023). https://doi.org/10.1002/adfm.202214412
J. Johny, Y. Li, M. Kamp, O. Prymak, S.-X. Liang et al., Laser-generated high entropy metallic glass nanops as bifunctional electrocatalysts. Nano Res. 15(6), 4807–4819 (2022). https://doi.org/10.1007/s12274-021-3804-2
T. Zhang, L. Zhao, H. Ma, S. Huang, L. You et al., The phase transition between decagonal quasicrystal and (1/0, 2/1) approximant in Al20Si20Mn20Fe20Ga20 high entropy quasicrystal alloy. J. Alloys Compd. 910, 164867 (2022). https://doi.org/10.1016/j.jallcom.2022.164867
P. Zhang, X. Hui, Y. Nie, R. Wang, C. Wang et al., New conceptual catalyst on spatial high-entropy alloy heterostructures for high-performance Li-O2 batteries. Small 19(15), 2206742 (2023). https://doi.org/10.1002/smll.202206742
A.A.H. Tajuddin, M. Wakisaka, T. Ohto, Y. Yu, H. Fukushima et al., Corrosion-resistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media. Adv. Mater. 35(3), 2207466 (2023). https://doi.org/10.1002/adma.202207466
J. Gu, F. Duan, S. Liu, W. Cha, J. Lu, Phase engineering of nanostructural metallic materials: classification, structures, and applications. Chem. Rev. 124(3), 1247–1287 (2024). https://doi.org/10.1021/acs.chemrev.3c00514
H. Liu, R. Jia, C. Qin, Q. Yang, Z. Tang et al., Anti-CO poisoning FePtRh nanoflowers with Rh-rich core and Fe-rich shell boost methanol oxidation electrocatalysis. Adv. Funct. Mater. 33(7), 2210626 (2023). https://doi.org/10.1002/adfm.202210626
S. Zhao, Z. Li, High entropy alloys for extreme load-bearing applications. Mater. Lab 1, 220035 (2022). https://doi.org/10.54227/mlab.20220035
B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui et al., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 95, 106962 (2022). https://doi.org/10.1016/j.nanoen.2022.106962
Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33(34), e2101342 (2021). https://doi.org/10.1002/adma.202101342
Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18(4), 2107265 (2022). https://doi.org/10.1002/smll.202107265
S. Wu, Y. Chen, W. Kang, X. Cai, L. Zhou, Hydrogen storage properties of MgTiVZrNb high-entropy alloy and its catalytic effect upon hydrogen storage in Mg. Int. J. Hydrog. Energy 50, 1113–1128 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.022
B. Liu, K. Li, Y. Luo, L. Gao, G. Duan, Sulfur spillover driven by charge transfer between AuPd alloys and SnO2 allows high selectivity for dimethyl disulfide gas sensing. Chem. Eng. J. 420, 129881 (2021). https://doi.org/10.1016/j.cej.2021.129881
R. Tu, K. Liang, Y. Sun, Y. Wu, W. Lv et al., Ultra-dilute high-entropy alloy catalyst with core-shell structure for high-active hydrogenation of furfural to furfuryl alcohol at mild temperature. Chem. Eng. J. 452, 139526 (2023). https://doi.org/10.1016/j.cej.2022.139526
X. Fu, J. Zhang, S. Zhan, F. Xia, C. Wang et al., High-entropy alloy nanosheets for fine-tuning hydrogen evolution. ACS Catal. 12(19), 11955–11959 (2022). https://doi.org/10.1021/acscatal.2c02778
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
X. Chang, M. Zeng, K. Liu, L. Fu, Phase engineering of high-entropy alloys. Adv. Mater. 32(14), 1907226 (2020). https://doi.org/10.1002/adma.201907226
X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A 9(2), 663–701 (2021). https://doi.org/10.1039/d0ta09601f
F. Liu, P. Liaw, Y. Zhang, Recent progress with BCC-structured high-entropy alloys. Metals 12(3), 501 (2022). https://doi.org/10.3390/met12030501
Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros et al., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14(5), 2883–2905 (2021). https://doi.org/10.1039/d1ee00505g
F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61(7), 2628–2638 (2013). https://doi.org/10.1016/j.actamat.2013.01.042
Y. Zhai, X. Ren, B. Wang, S. Liu, High-entropy catalyst: a novel platform for electrochemical water splitting. Adv. Funct. Mater. 32(47), 2207536 (2022). https://doi.org/10.1002/adfm.202207536
M. Li, F. Lin, S. Zhang, R. Zhao, L. Tao et al., High-entropy alloy electrocatalysts go to (sub-) nanoscale. Sci. Adv. 10(23), eadn2877 (2024). https://doi.org/10.1126/sciadv.adn2877
H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36(17), e2305453 (2024). https://doi.org/10.1002/adma.202305453
C. Deng, T. Wang, P. Wu, W. Zhu, S. Dai, High entropy materials for catalysis: a critical review of fundamental concepts and applications. Nano Energy 120, 109153 (2024). https://doi.org/10.1016/j.nanoen.2023.109153
Z. Luo, W. Gao, Q. Jiang, Determinants of vacancy formation and migration in high-entropy alloys. Sci. Adv. 11(1), eadr4697 (2025). https://doi.org/10.1126/sciadv.adr4697
L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao et al., Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015). https://doi.org/10.1038/ncomms6964
K. Wang, W. Hua, X. Huang, D. Stenzel, J. Wang et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14(1), 1487 (2023). https://doi.org/10.1038/s41467-023-37034-6
B.X. Cao, C. Wang, T. Yang, C.T. Liu, Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scr. Mater. 187, 250–255 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.008
J. Wang, B. Zhang, W. Guo, L. Wang, J. Chen et al., Toward electrocatalytic methanol oxidation reaction: longstanding debates and emerging catalysts. Adv. Mater. 35(26), e2211099 (2023). https://doi.org/10.1002/adma.202211099
M.V. Kante, M.L. Weber, S. Ni, I.C.G. van den Bosch, E. van der Minne et al., A high-entropy oxide as high-activity electrocatalyst for water oxidation. ACS Nano 17(6), 5329–5339 (2023). https://doi.org/10.1021/acsnano.2c08096
Y. Ai, H. Sun, Z. Gao, C. Wang, L. Guan et al., Dual enzyme mimics based on metal–ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy. Adv. Funct. Mater. 31(40), 2103581 (2021). https://doi.org/10.1002/adfm.202103581
L. Wang, H. Liu, J. Zhuang, D. Wang, Small-scale big science: from nano- to atomically dispersed catalytic materials. Small Sci. 2(11), 2200036 (2022). https://doi.org/10.1002/smsc.202200036
Y. Wang, W. Luo, S. Gong, L. Luo, Y. Li et al., Synthesis of high-entropy-alloy nanops by a step-alloying strategy as a superior multifunctional electrocatalyst. Adv. Mater. 35(36), 2302499 (2023). https://doi.org/10.1002/adma.202302499
M. Li, C. Huang, H. Yang, Y. Wang, X. Song et al., Programmable synthesis of high-entropy nanoalloys for efficient ethanol oxidation reaction. ACS Nano 17(14), 13659–13671 (2023). https://doi.org/10.1021/acsnano.3c02762
H. Li, H. Zhu, S. Zhang, N. Zhang, M. Du et al., Nano high-entropy materials: synthesis strategies and catalytic applications. Small Struct. 1(2), 2000033 (2020). https://doi.org/10.1002/sstr.202000033
W. Liao, F. Qing, Q. Liu, R. Wu, C. Zhou et al., Carbothermal shock synthesis of lattice oxygen-mediated high-entropy FeCoNiCuMo-O electrocatalyst with a fast kinetic, high efficiency, and stable oxygen evolution reaction. Nano Lett. 25(4), 1575–1583 (2025). https://doi.org/10.1021/acs.nanolett.4c05658
Y. Sun, S. Dai, High-entropy materials for catalysis: a new frontier. Sci. Adv. 7(20), eabg1600 (2021). https://doi.org/10.1126/sciadv.abg1600
S.A. Lee, J. Bu, J. Lee, H.W. Jang, High-entropy nanomaterials for advanced electrocatalysis. Small Sci. 3(5), 2200109 (2023). https://doi.org/10.1002/smsc.202200109
W. Al Zoubi, R.A.K. Putri, M.R. Abukhadra, Y.G. Ko, Recent experimental and theoretical advances in the design and science of high-entropy alloy nanops. Nano Energy 110, 108362 (2023). https://doi.org/10.1016/j.nanoen.2023.108362
Y. Liao, Y. Li, L. Ji, X. Liu, X. Zhao et al., Confined high-entropy-alloy nanops within graphitic shells for synergistically improved photothermal conversion. Acta Mater. 240, 118338 (2022). https://doi.org/10.1016/j.actamat.2022.118338
Y. Li, Y. Ma, Y. Liao, L. Ji, R. Zhao et al., High-entropy-alloy-nanops enabled wood evaporator for efficient photothermal conversion and sustainable solar desalination. Adv. Energy Mater. 12(47), 2203057 (2022). https://doi.org/10.1002/aenm.202203057
Y. Li, Y. Liao, J. Zhang, E. Huang, L. Ji et al., High-entropy-alloy nanops with enhanced interband transitions for efficient photothermal conversion. Angew. Chem. Int. Ed. 60(52), 27113–27118 (2021). https://doi.org/10.1002/anie.202112520
Y. Liao, Y. Li, R. Zhao, J. Zhang, L. Zhao et al., High-entropy-alloy nanops with 21 ultra-mixed elements for efficient photothermal conversion. Natl. Sci. Rev. 9(6), nwac041 (2022). https://doi.org/10.1093/nsr/nwac041
K. Kusada, M. Mukoyoshi, D. Wu, H. Kitagawa, Chemical synthesis, characterization, and properties of multi-element nanops. Angew. Chem. Int. Ed. 61(48), e202209616 (2022). https://doi.org/10.1002/anie.202209616
Y. Nakaya, E. Hayashida, H. Asakura, S. Takakusagi, S. Yasumura et al., High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 144(35), 15944–15953 (2022). https://doi.org/10.1021/jacs.2c01200
H.-K. Lin, Y.-H. Cheng, G.-Y. Li, Y.-C. Chen, P. Bazarnik et al., Study on the surface modification of nanostructured Ti alloys and coarse-grained Ti alloys. Metals 12(6), 948 (2022). https://doi.org/10.3390/met12060948
A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005). https://doi.org/10.2320/matertrans.46.2817
H. Xie, S. Chen, J. Liang, T. Wang, Z. Hou et al., Weakening intermediate bindings on CuPd/Pd core/shell nanops to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions. Adv. Funct. Mater. 31(26), 2100883 (2021). https://doi.org/10.1002/adfm.202100883
P.-F. Yin, M. Zhou, J. Chen, C. Tan, G. Liu et al., Synthesis of palladium-based Crystalline@Amorphous core–shell nanoplates for highly efficient ethanol oxidation. Adv. Mater. 32(21), 2000482 (2020). https://doi.org/10.1002/adma.202000482
X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), 2002853 (2020). https://doi.org/10.1002/adma.202002853
M. Cui, C. Yang, S. Hwang, M. Yang, S. Overa et al., Multi-principal elemental intermetallic nanops synthesized via a disorder-to-order transition. Sci. Adv. 8(4), eabm4322 (2022). https://doi.org/10.1126/sciadv.abm4322
G. Zhu, Y. Jiang, H. Yang, H. Wang, Y. Fang et al., Constructing structurally ordered high-entropy alloy nanops on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction. Adv. Mater. 34(15), 2110128 (2022). https://doi.org/10.1002/adma.202110128
J. Wang, W. Liu, Y. Wang, Y. Guo, M. Liu et al., AgCuInCdZn high-entropy alloy nanops-embedded in porous carbon fibers for long-cycling lithium metal anodes. Chem. Eng. J. 477, 146884 (2023). https://doi.org/10.1016/j.cej.2023.146884
H. Guo, Z. Guo, K. Chu, W. Zong, H. Zhu et al., Polymer-confined pyrolysis promotes the formation of ultrafine single-phase high-entropy alloys: a promising electrocatalyst for oxidation of nitrogen. Adv. Funct. Mater. 33(51), 2308229 (2023). https://doi.org/10.1002/adfm.202308229
Y.-H. Liu, C.-J. Hsieh, L.-C. Hsu, K.-H. Lin, Y.-C. Hsiao et al., Toward controllable and predictable synthesis of high-entropy alloy nanocrystals. Sci. Adv. 9(19), eadf9931 (2023). https://doi.org/10.1126/sciadv.adf9931
C.-Y. Wu, Y.-C. Hsiao, Y. Chen, K.-H. Lin, T.-J. Lee et al., A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. Sci. Adv. 10(30), eadl3693 (2024). https://doi.org/10.1126/sciadv.adl3693
J. Hao, Z. Zhuang, K. Cao, G. Gao, C. Wang et al., Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 13(1), 2662 (2022). https://doi.org/10.1038/s41467-022-30379-4
D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura et al., Platinum-group-metal high-entropy-alloy nanops. J. Am. Chem. Soc. 142(32), 13833–13838 (2020). https://doi.org/10.1021/jacs.0c04807
H. Zhu, S. Sun, J. Hao, Z. Zhuang, S. Zhang et al., A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16(2), 619–628 (2023). https://doi.org/10.1039/D2EE03185J
S.L.A. Bueno, A. Leonardi, N. Kar, K. Chatterjee, X. Zhan et al., Quinary, senary, and septenary high entropy alloy nanop catalysts from Core@Shell nanops and the significance of intrap heterogeneity. ACS Nano 16(11), 18873–18885 (2022). https://doi.org/10.1021/acsnano.2c07787
S. Saxena, T.S. Khan, F. Jalid, M. Ramteke, M. Ali Haider, In silico high throughput screening of bimetallic and single atom alloys using machine learning and ab initio microkinetic modelling. J. Mater. Chem. A 8(1), 107–123 (2020). https://doi.org/10.1039/C9TA07651D
Z. Lu, Z.W. Chen, C.V. Singh, Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 3(4), 1318–1333 (2020). https://doi.org/10.1016/j.matt.2020.07.029
J. Zhang, C. Wang, S. Huang, X. Xiang, Y. Xiong et al., Design high-entropy electrocatalyst via interpretable deep graph attention learning. Joule 7(8), 1832–1851 (2023). https://doi.org/10.1016/j.joule.2023.06.003
M.J.R. Haché, J. Tam, U. Erb, Y. Zou, Electrodeposited nanocrystalline medium-entropy alloys–An effective strategy of producing stronger and more stable nanomaterials. J. Alloys Compd. 899, 163233 (2022). https://doi.org/10.1016/j.jallcom.2021.163233
C.-Z. Yao, P. Zhang, M. Liu, G.-R. Li, J.-Q. Ye et al., Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53(28), 8359–8365 (2008). https://doi.org/10.1016/j.electacta.2008.06.036
J. Sure, D.S.M. Vishnu, C. Schwandt, Direct electrochemical synthesis of high-entropy alloys from metal oxides. Appl. Mater. Today 9, 111–121 (2017). https://doi.org/10.1016/j.apmt.2017.05.009
F. Yoosefan, A. Ashrafi, S.M. Monir Vaghefi, I. Constantin, Synthesis of CoCrFeMnNi high entropy alloy thin films by pulse electrodeposition: part 1: effect of pulse electrodeposition parameters. Met. Mater. Int. 26(8), 1262–1269 (2019). https://doi.org/10.1007/s12540-019-00404-1
F. Yoosefan, A. Ashrafi, S.M. Monir Vaghefi, Characterization of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films synthesized by pulse electrodeposition: part 2: effect of pulse electrodeposition parameters on the wettability and corrosion resistance. Met. Mater. Int. 27(1), 106–117 (2021). https://doi.org/10.1007/s12540-019-00584-w
D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen et al., The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J. Mater. Chem. A 9(2), 889–893 (2021). https://doi.org/10.1039/D0TA10574K
G.R. Dey, C.R. McCormick, S.S. Soliman, A.J. Darling, R.E. Schaak, Chemical insights into the formation of colloidal high entropy alloy nanops. ACS Nano 17(6), 5943–5955 (2023). https://doi.org/10.1021/acsnano.3c00176
A. Aliyu, C. Srivastava, Phase constitution, surface chemistry and corrosion behavior of electrodeposited MnFeCoNiCu high entropy alloy-graphene oxide composite coatings. Surf. Coat. Technol. 429, 127943 (2022). https://doi.org/10.1016/j.surfcoat.2021.127943
H. Luo, L. Li, F. Lin, Q. Zhang, K. Wang et al., Sub-2 nm microstrained high-entropy-alloy nanops boost hydrogen electrocatalysis. Adv. Mater. 36(32), e2403674 (2024). https://doi.org/10.1002/adma.202403674
G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143(41), 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
Z. Zhang, P. Yu, Z. Liu, K. Liu, Z. Mu et al., Off-equilibrium hydrothermal synthesis of high-entropy alloy nanops. J. Am. Chem. Soc. 147(11), 9640–9652 (2025). https://doi.org/10.1021/jacs.4c17756
B. Niu, F. Zhang, H. Ping, N. Li, J. Zhou et al., Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci. Rep. 7, 3421 (2017). https://doi.org/10.1038/s41598-017-03644-6
A.S. Rogachev, S.G. Vadchenko, N.A. Kochetov, D.Y. Kovalev, I.D. Kovalev et al., Combustion synthesis of TiC-based ceramic-metal composites with high entropy alloy binder. J. Eur. Ceram. Soc. 40(7), 2527–2532 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.059
K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi et al., Hydrogen spillover-driven synthesis of high-entropy alloy nanops as a robust catalyst for CO2 hydrogenation. Nat. Commun. 12(1), 3884 (2021). https://doi.org/10.1038/s41467-021-24228-z
Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359(6383), 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
J.-Y. Song, C. Kim, M. Kim, K.M. Cho, I. Gereige et al., Generation of high-density nanops in the carbothermal shock method. Sci. Adv. 7(48), eabk2984 (2021). https://doi.org/10.1126/sciadv.abk2984
M. Kheradmandfard, H. Minouei, N. Tsvetkov, A.K. Vayghan, S.F. Kashani-Bozorg et al., Ultrafast green microwave-assisted synthesis of high-entropy oxide nanops for Li-ion battery applications. Mater. Chem. Phys. 262, 124265 (2021). https://doi.org/10.1016/j.matchemphys.2021.124265
R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field. Nature 399(6737), 668–670 (1999). https://doi.org/10.1038/21390
H. Qiao, M.T. Saray, X. Wang, S. Xu, G. Chen et al., Scalable synthesis of high entropy alloy nanops by microwave heating. ACS Nano 15(9), 14928–14937 (2021). https://doi.org/10.1021/acsnano.1c05113
B. Wang, W. Liu, Y. Leng, X. Yu, C. Wang et al., Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting. iScience 26(4), 106326 (2023). https://doi.org/10.1016/j.isci.2023.106326
B. Wang, C. Wang, X. Yu, Y. Cao, L. Gao et al., General synthesis of high-entropy alloy and ceramic nanops in nanoseconds. Nat. Synth. 1(2), 138–146 (2022). https://doi.org/10.1038/s44160-021-00004-1
T. Yu, Y. Zhang, Y. Hu, K. Hu, X. Lin et al., Twelve-component free-standing nanoporous high-entropy alloys for multifunctional electrocatalysis. ACS Mater. Lett. 4(1), 181–189 (2022). https://doi.org/10.1021/acsmaterialslett.1c00762
S. Li, X. Tang, H. Jia, H. Li, G. Xie et al., Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 383, 164–171 (2020). https://doi.org/10.1016/j.jcat.2020.01.024
H. Liu, H. Qin, J. Kang, L. Ma, G. Chen et al., A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting. Chem. Eng. J. 435, 134898 (2022). https://doi.org/10.1016/j.cej.2022.134898
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma et al., Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 15(40), e1902730 (2019). https://doi.org/10.1002/smll.201902730
Y. Ren, Y. Zhang, Q. Zheng, L. Wang, W. Jiang, Integrating large specific surface area and tunable magnetic loss in Fe@C composites for lightweight and high-efficiency electromagnetic wave absorption. Carbon 206, 226–236 (2023). https://doi.org/10.1016/j.carbon.2023.02.048
H. Ge, L. Zheng, G. Yuan, W. Shi, J. Liu et al., Polyoxometallate cluster induced high-entropy oxide sub-1 nm nanosheets as photoelectrocatalysts for Zn-air batteries. J. Am. Chem. Soc. 146(15), 10735–10744 (2024). https://doi.org/10.1021/jacs.4c00652
J. Ai, S. Liu, Y. Zhang, Y. Han, B. Liu et al., 3D-printed high-entropy alloy nanoarchitectures. Small 21(8), 2409900 (2025). https://doi.org/10.1002/smll.202409900
G. Cao, S. Yang, J.-C. Ren, W. Liu, Electronic descriptors for designing high-entropy alloy electrocatalysts by leveraging local chemical environments. Nat. Commun. 16(1), 1251 (2025). https://doi.org/10.1038/s41467-025-56421-9
Z. Lu, W. Sun, P. Cai, L. Fan, K. Chen et al., High-entropy alloy catalysts for advanced hydrogen-production zinc-based batteries. Energy Environ. Sci. 18(6), 2918–2930 (2025). https://doi.org/10.1039/d4ee05500d
Y. Fu, J. Li, H. Luo, C. Du, X. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J. Mater. Sci. Technol. 80, 217–233 (2021). https://doi.org/10.1016/j.jmst.2020.11.044
S. Yang, X. Sun, Y. Ning, Y. Yuan, B. Luo et al., Effectively tuning electromagnetic absorption of carbon-based nanocomposites by phase transition. Carbon 190, 47–56 (2022). https://doi.org/10.1016/j.carbon.2021.12.091
S. Wang, Q. Liu, S. Li, F. Huang, H. Zhang, Joule-heating-driven synthesis of a honeycomb-like porous carbon nanofiber/high entropy alloy composite as an ultralightweight electromagnetic wave absorber. ACS Nano 18(6), 5040–5050 (2024). https://doi.org/10.1021/acsnano.3c11408
J. Ma, B. Zhao, H. Xiang, F.-Z. Dai, Y. Liu et al., High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption. J. Adv. Ceram. 11(5), 754–768 (2022). https://doi.org/10.1007/s40145-022-0569-3
F. Gu, W. Wang, H. Meng, Y. Liu, L. Zhuang et al., Lattice distortion boosted exceptional electromagnetic wave absorption in high-entropy diborides. Matter 8(3), 102004 (2025). https://doi.org/10.1016/j.matt.2025.102004
A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018). https://doi.org/10.1038/s41467-018-05774-5
C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
B. Yang, Y. Zhang, H. Pan, W. Si, Q. Zhang et al., High-entropy enhanced capacitive energy storage. Nat. Mater. 21(9), 1074–1080 (2022). https://doi.org/10.1038/s41563-022-01274-6
J. Chen, H. Huang, T. Xu, Y. Lv, B. Liu et al., Enhancement of vanadium addition on hydrogen storage properties of high entropy alloys TiZrFeMnCrVx. Int. J. Hydrog. Energy 50, 1223–1233 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.121
J. Hu, J. Zhang, H. Xiao, L. Xie, G. Sun et al., A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb. Int. J. Hydrog. Energy 46(40), 21050–21058 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.200
J. Hu, J. Zhang, M. Li, S. Zhang, H. Xiao et al., The origin of anomalous hydrogen occupation in high entropy alloys. J. Mater. Chem. A 10(13), 7228–7237 (2022). https://doi.org/10.1039/d1ta10649j
J.W. Zhang, P.P. Zhou, Z.M. Cao, P.C. Li, J.T. Hu et al., Composition and temperature influence on hydrogenation performance of TiZrHfMoxNb2–x high entropy alloys. J. Mater. Chem. A 11(38), 20623–20635 (2023). https://doi.org/10.1039/D3TA01990J
V.R. Naganaboina, M. Anandkumar, A.S. Deshpande, S.G. Singh, Single-phase high-entropy oxide-based chemiresistor: toward selective and sensitive detection of methane gas for real-time applications. Sens. Actuat. B Chem. 357, 131426 (2022). https://doi.org/10.1016/j.snb.2022.131426
R. Shaik, R.K. Kampara, A. Kumar, C.S. Sharma, M. Kumar, Metal oxide nanofibers based chemiresistive H2S gas sensors. Coord. Chem. Rev. 471, 214752 (2022). https://doi.org/10.1016/j.ccr.2022.214752
K.M.B. Urs, N.K. Katiyar, R. Kumar, K. Biswas, A.K. Singh et al., Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanop-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale 12(22), 11830–11841 (2020). https://doi.org/10.1039/D0NR02177F
M.T. Banizi, M. Khakbiz, S. Shakibania, E. Amiri, F. Naserian, Functionalized high entropy alloys with ZIF-8 and LDH nanolayers for next-generation drug eluting medical implants. J. Alloys Compd. 997, 174883 (2024). https://doi.org/10.1016/j.jallcom.2024.174883
Y. Sun, W. Zhang, Q. Zhang, Y. Li, L. Gu et al., A general approach to high-entropy metallic nanowire electrocatalysts. Matter 6(1), 193–205 (2023). https://doi.org/10.1016/j.matt.2022.09.023
P. Zhao, Q. Cao, W. Yi, X. Hao, J. Li et al., Facile and general method to synthesize Pt-based high-entropy-alloy nanops. ACS Nano 16(9), 14017–14028 (2022). https://doi.org/10.1021/acsnano.2c03818
X. Yang, J. Feng, Y. Li, W. Zhu, Y. Pan et al., PdMoPtCoNi high entropy nanoalloy with d electron self-complementation-induced multisite synergistic effect for efficient nanozyme catalysis. Adv. Sci. 11(38), 2406149 (2024). https://doi.org/10.1002/advs.202406149
X. He, Y. Qian, C. Wu, J. Feng, X. Sun et al., Entropy-mediated high-entropy MXenes nanotherapeutics: NIR-II-enhanced intrinsic oxidase mimic activity to combat methicillin-resistant Staphylococcus aureus infection. Adv. Mater. 35(26), 2211432 (2023). https://doi.org/10.1002/adma.202211432
H. Li, J. Lai, Z. Li, L. Wang, Multi-sites electrocatalysis in high-entropy alloys. Adv. Funct. Mater. 31(47), 2106715 (2021). https://doi.org/10.1002/adfm.202106715
D. Zhang, H. Zhao, X. Wu, Y. Deng, Z. Wang et al., Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys. Adv. Funct. Mater. 31(9), 2006939 (2021). https://doi.org/10.1002/adfm.202006939
Z. Li, L. Zhai, Y. Ge, Z. Huang, Z. Shi et al., Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev. 9(5), 142 (2021). https://doi.org/10.1093/nsr/nwab142
H. Cai, H. Yang, S. He, D. Wan, Y. Kong et al., Size-adjustable high-entropy alloy nanops as an efficient platform for electrocatalysis. Angew. Chem. Int. Ed. 64(13), e202423765 (2025). https://doi.org/10.1002/anie.202423765
H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9(42), eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
L. Zhang, P. Jin, Z. Wu, B. Zhou, J. Jiang et al., CuO/CoO bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled cathodic ammonia production. Energy Environ. Mater. 7(5), e12725 (2024). https://doi.org/10.1002/eem2.12725
Y. Zhang, J. Liu, Y. Xu, C. Xie, S. Wang et al., Design and regulation of defective electrocatalysts. Chem. Soc. Rev. 53(21), 10620–10659 (2024). https://doi.org/10.1039/d4cs00217b
M. Wei, Y. Sun, J. Zhang, F. Ai, S. Xi et al., High-entropy alloy nanocrystal assembled by nanosheets with d–d electron interaction for hydrogen evolution reaction. Energy Environ. Sci. 16(9), 4009–4019 (2023). https://doi.org/10.1039/D3EE01929B
H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang et al., Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11(1), 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9
G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018). https://doi.org/10.1016/j.electacta.2018.05.035
Y. Wang, Y. Zhang, P. Xing, X. Li, Q. Du et al., Self-encapsulation of high-entropy alloy nanops inside carbonized wood for highly durable electrocatalysis. Adv. Mater. 36(28), 2402391 (2024). https://doi.org/10.1002/adma.202402391
W. Shi, H. Liu, Z. Li, C. Li, J. Zhou et al., High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat 2(2), 186–196 (2022). https://doi.org/10.1002/sus2.56
K. Huang, J. Xia, Y. Lu, B. Zhang, W. Shi et al., Self-reconstructed spinel surface structure enabling the long-term stable hydrogen evolution reaction/oxygen evolution reaction efficiency of FeCoNiRu high-entropy alloyed electrocatalyst. Adv. Sci. 10(14), 2300094 (2023). https://doi.org/10.1002/advs.202300094
A. Abdelhafiz, B. Wang, A.R. Harutyunyan, J. Li, Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv. Energy Mater. 12(35), 2200742 (2022). https://doi.org/10.1002/aenm.202200742
Y. Qin, W. Zhang, F. Wang, J. Li, J. Ye et al., Extraordinary p–d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C−C bond cleavage of ethylene glycol electrooxidation. Angew. Chem. 134(16), e202200899 (2022). https://doi.org/10.1002/ange.202200899
C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng et al., Publisher Correction: Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12(1), 7099 (2021). https://doi.org/10.1038/s41467-021-27395-1
Y. Men, D. Wu, Y. Hu, L. Li, P. Li et al., Understanding alkaline hydrogen oxidation reaction on PdNiRuIrRh high-entropy-alloy by machine learning potential. Angew. Chem. Int. Ed. 62(27), e202217976 (2023). https://doi.org/10.1002/anie.202217976
X. Zhao, H. Cheng, X. Chen, Q. Zhang, C. Li et al., Multiple metal-nitrogen bonds synergistically boosting the activity and durability of high-entropy alloy electrocatalysts. J. Am. Chem. Soc. 146(5), 3010–3022 (2024). https://doi.org/10.1021/jacs.3c08177
W. Gong, P. Guo, L. Zhang, R. Fu, M. Yan et al., Atomically dispersed bimetallic single-atom Cu, Fe/NC as pH-universal ORR electrocatalyst. Chem. Eng. J. 507, 160400 (2025). https://doi.org/10.1016/j.cej.2025.160400
X. Zhou, Y. Ma, Y. Ge, S. Zhu, Y. Cui et al., Preparation of Au@Pd core-shell nanorods with fcc-2H- fcc heterophase for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 144(1), 547–555 (2022). https://doi.org/10.1021/jacs.1c11313
M. Xie, B. Zhang, Z. Jin, P. Li, G. Yu, Atomically reconstructed palladium metallene by intercalation-induced lattice expansion and amorphization for highly efficient electrocatalysis. ACS Nano 16(9), 13715–13727 (2022). https://doi.org/10.1021/acsnano.2c05190
H. Li, M. Sun, Y. Pan, J. Xiong, H. Du et al., The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B Environ. 312, 121431 (2022). https://doi.org/10.1016/j.apcatb.2022.121431
Y. Lv, P. Liu, R. Xue, Q. Guo, J. Ye et al., Cascaded p–d orbital hybridization interaction in ultrathin high-entropy alloy nanowires boosts complete non-CO pathway of methanol oxidation reaction. Adv. Sci. 11(19), 2309813 (2024). https://doi.org/10.1002/advs.202309813
C. Zhan, L. Bu, H. Sun, X. Huang, Z. Zhu et al., Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 62(3), e202213783 (2023). https://doi.org/10.1002/anie.202213783
V.-H. Do, J.-M. Lee, Surface engineering for stable electrocatalysis. Chem. Soc. Rev. 53(5), 2693–2737 (2024). https://doi.org/10.1039/d3cs00292f
Z. Guo, Y. Yu, C. Li, E. Campos dos Santos, T. Wang et al., Deciphering structure-activity relationship towards CO2 electroreduction over SnO2 by a standard research paradigm. Angew. Chem. Int. Ed. 63(12), e202319913 (2024). https://doi.org/10.1002/anie.202319913
L. Yang, R. He, J. Chai, X. Qi, Q. Xue et al., Synthesis strategies for high entropy nanops. Adv. Mater. 37(1), 2412337 (2025). https://doi.org/10.1002/adma.202412337
S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
P. Shao, H.-X. Zhang, Q.-L. Hong, L. Yi, Q.-H. Li et al., Enhancing CO2 electroreduction to ethylene via Copper−Silver tandem catalyst in boron-imidazolate framework nanosheet. Adv. Energy Mater. 13(19), 2300088 (2023). https://doi.org/10.1002/aenm.202300088
J.K. Pedersen, T.A.A. Batchelor, A. Bagger, J. Rossmeisl, High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 10(3), 2169–2176 (2020). https://doi.org/10.1021/acscatal.9b04343
L. Jiao, C. Mao, F. Xu, X. Cheng, P. Cui et al., Constructing gold single-atom catalysts on hierarchical nitrogen-doped carbon nanocages for carbon dioxide electroreduction to syngas. Small 20(16), 2305513 (2024). https://doi.org/10.1002/smll.202305513
Z. Luo, Y. Guo, C. He, Y. Guan, L. Zhang et al., Creating high-entropy single atoms on transition disulfides through substrate-induced redox dynamics for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 136(32), e202405017 (2024). https://doi.org/10.1002/ange.202405017
Z.W. Chen, Z. Gariepy, L. Chen, X. Yao, A. Anand et al., Machine-learning-driven high-entropy alloy catalyst discovery to circumvent the scaling relation for CO2 reduction reaction. ACS Catal. 12(24), 14864–14871 (2022). https://doi.org/10.1021/acscatal.2c03675
H. Li, H. Huang, Y. Chen, F. Lai, H. Fu et al., High-entropy alloy aerogels: a new platform for carbon dioxide reduction. Adv. Mater. 35(2), e2209242 (2023). https://doi.org/10.1002/adma.202209242