In Situ Generated Sulfate-Facilitated Efficient Nitrate Electrosynthesis on 2D PdS2 with Unique Imitating Growth Feature
Corresponding Author: Tianyi Ma
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 289
Abstract
As a green sustainable alternative technology, synthesizing nitrate by electrocatalytic nitrogen oxidation reaction (NOR) can replace the traditional energy-intensive Ostwald process. But low nitrogen fixation yields and poor selectivity due to the high bond energy of the N≡N bond and competition from the oxygen evolution reaction in the electrolyte restrict its application. On the other hand, two-dimensional (2D) PdS2 as a member in the family of group-10 novel transition metal dichalcogenides (NTMDs) presents the interesting optical and electronic properties due to its novel folded pentagonal structure, but few researches involve to its fabrication and application. Herein, unique imitating growth feature for PdS2 on different 2D substrates has been firstly discovered for constructing 2D/2D heterostructures by interface engineering. Due to the different exposed chemical groups on the substrates, PdS2 grows as the imitation to the morphologies of the substrates and presents different thickness, size, shape and the degree of oxidation, resulting in the significant difference in the NOR activity and stability of the obtained composite catalysts. Especially, the thin and small PdS2 nanoplates with more defects can be obtained by decorating poly(1-vinyl-3-ethylimidazolium bromide) on the 2D substrate, easily oxidized during the preparation process, resulting in the in situ generation of SO42−, which plays a crucial role in reducing the activation energy of the NOR process, leading to improved efficiency for nitrate production, verified by theoretical calculation. This research provides valuable insights for the development of novel electrocatalysts based on NTMDs for NOR and highlights the importance of interface engineering in enhancing catalytic performance.
Highlights:
1 Unique imitating growth feature for PdS2 on different 2D substrates has been firstly discovered for constructing 2D/2D heterostructures by interface engineering.
2 The thin and small PdS2 nanoplates with active defects can be inducted by poly(1-vinyl-3-ethylimidazolium bromide (PVEIB), resulting in the obtained PdS2@PVEIB/PPy/GO exhibited the excellent nitrogen oxidation reaction (NOR) electroactivity with the outstanding stability and selectivity.
3 The in situ generation of SO42−, caused by the oxidation during the preparation process or exposed in air, as well as at high NOR potential, plays a crucial role in reducing the activation energy of the NOR process, leading to improved efficiency for nitrate production.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Ouyang, J. Liang, Y. Luo, D. Zheng, S. Sun et al., Recent advances in electrocatalytic ammonia synthesis. Chin. J. Catal. 50, 6–44 (2023). https://doi.org/10.1016/S1872-2067(23)64464-X
- I. Shaheen, I. Hussain, T. Zahra, M.S. Javed, S.S. Ahmad Shah et al., Recent advancements in metal oxides for energy storage materials: design classification and electrodes configuration of supercapacitor. J Energy Storage 72, 108719 (2023). https://doi.org/10.1016/j.est.2023.108719
- J. Ba, H. Dong, M. Odziomek, F. Lai, R. Wang et al., Red carbon mediated formation of Cu2O clusters dispersed on the oxocarbon framework by Fehling’s route and their use for the nitrate electroreduction in acidic conditions. Adv. Mater. 36(25), 2400396 (2024). https://doi.org/10.1002/adma.202400396
- A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 50(17), 9817–9844 (2021). https://doi.org/10.1039/D1CS00330E
- M. Jiang, M. Zhu, M. Wang, Y. He, X. Luo et al., Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano 17(4), 3209–3224 (2023). https://doi.org/10.1021/acsnano.2c11046
- H. Guo, Y. Zhou, K. Chu, X. Cao, J. Qin et al., Improved ammonia synthesis and energy output from zinc-nitrate batteries by spin-state regulation in perovskite oxides. J. Am. Chem. Soc. 147(4), 3119–3128 (2025). https://doi.org/10.1021/jacs.4c12240
- K. Chu, W. Zong, G. Xue, H. Guo, J. Qin et al., Cation substitution strategy for developing perovskite oxide with rich oxygen vacancy-mediated charge redistribution enables highly efficient nitrate electroreduction to ammonia. J. Am. Chem. Soc. 145(39), 21387–21396 (2023). https://doi.org/10.1021/jacs.3c06402
- T. Li, S. Han, C. Wang, Y. Huang, Y. Wang et al., Ru-doped Pd nanops for nitrogen electrooxidation to nitrate. ACS Catal. 11(22), 14032–14037 (2021). https://doi.org/10.1021/acscatal.1c04360
- Z. Wang, J. Liu, H. Zhao, W. Xu, J. Liu et al., Free radicals promote electrocatalytic nitrogen oxidation. Chem. Sci. 14(7), 1878–1884 (2023). https://doi.org/10.1039/d2sc06599a
- H. Mao, Y. Sun, H. Li, S. Li, D. Liu et al., Electrosynthesis of nitrate by Pd and TiO2 nanops anchored on 2-methylimidazolium functionalized polypyrrole/graphene oxide. Electrochim. Acta 482, 143978 (2024). https://doi.org/10.1016/j.electacta.2024.143978
- Z. Nie, L. Zhang, X. Ding, M. Cong, F. Xu et al., Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru-nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru atoms. Adv. Mater. 34(14), 2108180 (2022). https://doi.org/10.1002/adma.202108180
- Y. Zhang, F. Du, R. Wang, X. Ling, X. Wang et al., Electrocatalytic fixation of N2 into NO3−: electron transfer between oxygen vacancies and loaded Au in Nb2O5−x nanobelts to promote ambient nitrogen oxidation. J. Mater. Chem. A 9(32), 17442–17450 (2021). https://doi.org/10.1039/D1TA03128G
- L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu et al., A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. Int. Ed. 59(27), 10888–10893 (2020). https://doi.org/10.1002/anie.202003518
- H. Mao, H. Li, Y. Sun, S. Wu, Q. Wu et al., Electrosynthesis of nitrate by FeS2-TiO2 heterogeneous nanops supported on 2-methylimidazolium functionalized polypyrrole/graphene oxide. Chem. Eng. J. 489, 151414 (2024). https://doi.org/10.1016/j.cej.2024.151414
- H. Mao, Y. Sun, H. Li, S. Wu, D. Liu et al., Synergy of Pd2+/S2−-doped TiO2 supported on 2-methylimidazolium-functionalized polypyrrole/graphene oxide for enhanced nitrogen electrooxidation. Adv. Mater. 36(16), 2313155 (2024). https://doi.org/10.1002/adma.202313155
- T. Li, S. Han, C. Cheng, Y. Wang, X. Du et al., Sulfate-enabled nitrate synthesis from nitrogen electrooxidation on a rhodium electrocatalyst. Angew. Chem. Int. Ed. 61(26), e202204541 (2022). https://doi.org/10.1002/anie.202204541
- G. Chen, C. Zhang, S. Xue, J. Liu, Y. Wang et al., A polarization boosted strategy for the modification of transition metal dichalcogenides as electrocatalysts for water-splitting. Small 17(26), 2100510 (2021). https://doi.org/10.1002/smll.202100510
- L. Ma, Y. Li, Y. Xu, J. Sun, J. Liu et al., Two-dimensional transition metal dichalcogenides for electrocatalytic nitrogen fixation to ammonia: advances, challenges and perspectives. A mini review. Electrochem. Commun. 125, 107002 (2021). https://doi.org/10.1016/j.elecom.2021.107002
- M. Wang, L. Zhang, Y. He, H. Zhu, Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 9(9), 5320–5363 (2021). https://doi.org/10.1039/d0ta12152e
- H. Mao, Y. Fu, H. Yang, S. Zhang, J. Liu et al., Structure-activity relationship toward electrocatalytic nitrogen reduction of MoS2 growing on polypyrrole/graphene oxide affected by pyridinium-type ionic liquids. Chem. Eng. J. 425, 131769 (2021). https://doi.org/10.1016/j.cej.2021.131769
- H. Mao, Y. Fu, H. Yang, Z.-Z. Deng, Y. Sun et al., Ultrathin 1T-MoS2 nanoplates induced by quaternary ammonium-type ionic liquids on polypyrrole/graphene oxide nanosheets and its irreversible crystal phase transition during electrocatalytic nitrogen reduction. ACS Appl. Mater. Interfaces 12(22), 25189–25199 (2020). https://doi.org/10.1021/acsami.0c05204
- H. Mao, H. Yang, J. Liu, S. Zhang, D. Liu et al., Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide. Chin. J. Catal. 43(5), 1341–1350 (2022). https://doi.org/10.1016/S1872-2067(21)63944-X
- D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy 49, 283–289 (2018). https://doi.org/10.1016/j.nanoen.2018.04.019
- K. He, W. Xu, J. Tang, Y. Lu, C. Yi et al., Centimeter-scale PdS2 ultrathin films with high mobility and broadband photoresponse. Small 19(17), e2206915 (2023). https://doi.org/10.1002/smll.202206915
- L. Pi, L. Li, K. Liu, Q. Zhang, H. Li et al., Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 29(51), 1904932 (2019). https://doi.org/10.1002/adfm.201904932
- Y. Ma, X. Gong, F. Xiao, Y. Liu, X. Ming, First-principles study on the selective detection of toxic gases by 2D monolayer PdS2: insight into charge transfer dynamics and alignment of frontier molecular orbitals. ACS Appl. Nano Mater. 6(13), 12470–12478 (2023). https://doi.org/10.1021/acsanm.3c02177
- R.O. Figueiredo, L. Seixas, Hydrogen-evolution reaction in two-dimensional PdS2 by phase and defect engineering. Phys. Rev. Applied 17(3), 034035 (2022). https://doi.org/10.1103/physrevapplied.17.034035
- J. Li, D. Liang, G. Liu, B. Jia, J. Cao et al., Defect induced electrocatalytic hydrogen properties of pentagonal PdX2 (X = S, Se). RSC Adv. 11(61), 38478–38485 (2021). https://doi.org/10.1039/D1RA07466K
- M. Ghorbani-Asl, A. Kuc, P. Miró, T. Heine, A single-material logical junction based on 2D crystal PdS2. Adv. Mater. 28(5), 853–856 (2016). https://doi.org/10.1002/adma.201504274
- A. Guha, R. Sharma, K.R. Sahoo, A.B. Puthirath, N. Shyaga et al., One-dimensional hollow structures of 2O-PdS2 decorated carbon for water electrolysis. ACS Appl. Energy Mater. 4(9), 8715–8720 (2021). https://doi.org/10.1021/acsaem.1c01703
- F. Karimi, M. Akin, R. Bayat, M. Bekmezci, R. Darabi et al., Application of quasihexagonal Pt@PdS2-MWCNT catalyst with high electrochemical performance for electro-oxidation of methanol, 2-propanol, and glycerol alcohols for fuel cells. Mol. Catal. 536, 112874 (2023). https://doi.org/10.1016/j.mcat.2022.112874
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong et al., Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55(23), 6702–6707 (2016). https://doi.org/10.1002/anie.201602237
- K. Chu, Y.-P. Liu, Y.-B. Li, Y.-L. Guo, Y. Tian, Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 12(6), 7081–7090 (2020). https://doi.org/10.1021/acsami.9b18263
- J. Szanyi, J.H. Kwak, R.J. Chimentao, C.H.F. Peden, Effect of H2O on the adsorption of NO2 on γ-Al2O3: an in situ FTIR/MS study. J. Phys. Chem. C 111(6), 2661–2669 (2007). https://doi.org/10.1021/jp066326x
- T. Venkov, K. Hadjiivanov, D. Klissurski, IR spectroscopy study of NO adsorption and NO + O2 co-adsorption on Al2O3. Phys. Chem. Chem. Phys. 4(11), 2443–2448 (2002). https://doi.org/10.1039/b111396h
- T. Li, S. Han, Y. Wang, J. Zhou, B. Zhang et al., A spectroscopic study on nitrogen electrooxidation to nitrate. Angew. Chem. Int. Ed. 62(19), e202217411 (2023). https://doi.org/10.1002/anie.202217411
- P. Miró, M. Ghorbani-Asl, T. Heine, Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. 53(11), 3015–3018 (2014). https://doi.org/10.1002/anie.201309280
- X. Zhang, G. Su, J. Lu, W. Yang, W. Zhuang et al., Centimeter-scale few-layer PdS2: fabrication and physical properties. ACS Appl. Mater. Interfaces 13(36), 43063–43074 (2021). https://doi.org/10.1021/acsami.1c11824
- A. Taherkhani, S.Z. Mortazavi, S. Ahmadi, A. Reyhani, Synchrotron EXAFS spectroscopy and density functional theory studies of Pd/MoS2 Schottky-type nano/hetero-junctions. Appl. Surf. Sci. 604, 154557 (2022). https://doi.org/10.1016/j.apsusc.2022.154557
- M. Xiang, L. He, Q. Su, B. Sun, N. Wang et al., Supercapacitor properties of N/S/O Co-doped and hydrothermally sculpted porous carbon cloth in pH-universal aqueous electrolytes: mechanism of performance enhancement. Chem. Eng. J. 485, 149835 (2024). https://doi.org/10.1016/j.cej.2024.149835
- J. Liu, S.C. Smith, Y. Gu, L. Kou, C─N coupling enabled by N─N bond breaking for electrochemical urea production. Adv. Funct. Mater. 33(47), 2305894 (2023). https://doi.org/10.1002/adfm.202305894
- C. Dai, Y. Sun, G. Chen, A.C. Fisher, Z.J. Xu, Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew. Chem. Int. Ed. 59(24), 9418–9422 (2020). https://doi.org/10.1002/anie.202002923
- H. Liao, T. Luo, P. Tan, K. Chen, L. Lu et al., Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 31(38), 2102772 (2021). https://doi.org/10.1002/adfm.202102772
- Q. Chen, Q. Zhang, B. Chen, J. Zhang, W. Peng et al., Enhanced long-term performance of sulfides in oxygen evolution reaction by sulfate ion-assisted strategy. Adv. Funct. Mater. 34(44), 2406233 (2024). https://doi.org/10.1002/adfm.202406233
- M. Kuang, Y. Wang, W. Fang, H. Tan, M. Chen et al., Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 32(26), 2002189 (2020). https://doi.org/10.1002/adma.202002189
- M. Anand, C.S. Abraham, J.K. Nørskov, Electrochemical oxidation of molecular nitrogen to nitric acid–towards a molecular level understanding of the challenges. Chem. Sci. 12(18), 6442–6448 (2021). https://doi.org/10.1039/D1SC00752A
- C.E. Hamilton, J.R. Lomeda, Z. Sun, J.M. Tour, A.R. Barron, Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 3(2), 138–145 (2010). https://doi.org/10.1007/s12274-010-1007-3
- Y. Cai, J. Li, L. Yi, X. Yan, J. Li, Fabricating superhydrophobic and oleophobic surface with silica nanops modified by silanes and environment-friendly fluorinated chemicals. Appl. Surf. Sci. 450, 102–111 (2018). https://doi.org/10.1016/j.apsusc.2018.04.186
- G. Yu, J. Wang, H. Ma, X. Liu, S. Qin et al., Exploring abundantly synergic effects of K-Cu supported paper catalysts using TiO2-ZrO2 mesoporous fibers as matrix towards soot efficient oxidation. Chem. Eng. J. 417, 128111 (2021). https://doi.org/10.1016/j.cej.2020.128111
- H. Che, J. Wang, X. Gao, J. Chen, P. Wang et al., Regulating directional transfer of electrons on polymeric g-C3N5 for highly efficient photocatalytic H2O2 production. J. Colloid Interface Sci. 627, 739–748 (2022). https://doi.org/10.1016/j.jcis.2022.07.080
- D. Wang, W. Gong, J. Zhang, G. Wang, H. Zhang et al., In situ growth of MOFs on Ni(OH)2 for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural. Chem. Commun. 57(86), 11358–11361 (2021). https://doi.org/10.1039/D1CC04680B
- H. Wang, G. Yan, M. Li, H. Ji, Y. Feng et al., Nucleophilic ring-opening of thiolactones: a facile method for sulfhydrylization of a carbon nanotube-based cathode toward high-performance Li–S batteries. ACS Sustain. Chem. Eng. 10(15), 5005–5014 (2022). https://doi.org/10.1021/acssuschemeng.2c00204
- F. Luo, P. Yu, J. Xiang, J. Jiang, S. Chen, In situ generation of oxyanions-decorated cobalt(nickel) oxyhydroxide catalyst with high corrosion resistance for stable and efficient seawater oxidation. J. Energy Chem. 94, 508–516 (2024). https://doi.org/10.1016/j.jechem.2024.03.006
- G. Liu, L. Ding, Y. Meng, A. Ali, G. Zuo et al., A review on ultra-small undoped MoS2 as advanced catalysts for renewable fuel production. Carbon Energy 6(2), e521 (2024). https://doi.org/10.1002/cey2.521
- S. Liu, X. Zhang, S. Wu, X. Chen, X. Yang et al., Crepe cake structured layered double hydroxide/sulfur/graphene as a positive electrode material for Li-S batteries. ACS Nano 14(7), 8220–8231 (2020). https://doi.org/10.1021/acsnano.0c01694
References
L. Ouyang, J. Liang, Y. Luo, D. Zheng, S. Sun et al., Recent advances in electrocatalytic ammonia synthesis. Chin. J. Catal. 50, 6–44 (2023). https://doi.org/10.1016/S1872-2067(23)64464-X
I. Shaheen, I. Hussain, T. Zahra, M.S. Javed, S.S. Ahmad Shah et al., Recent advancements in metal oxides for energy storage materials: design classification and electrodes configuration of supercapacitor. J Energy Storage 72, 108719 (2023). https://doi.org/10.1016/j.est.2023.108719
J. Ba, H. Dong, M. Odziomek, F. Lai, R. Wang et al., Red carbon mediated formation of Cu2O clusters dispersed on the oxocarbon framework by Fehling’s route and their use for the nitrate electroreduction in acidic conditions. Adv. Mater. 36(25), 2400396 (2024). https://doi.org/10.1002/adma.202400396
A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 50(17), 9817–9844 (2021). https://doi.org/10.1039/D1CS00330E
M. Jiang, M. Zhu, M. Wang, Y. He, X. Luo et al., Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS Nano 17(4), 3209–3224 (2023). https://doi.org/10.1021/acsnano.2c11046
H. Guo, Y. Zhou, K. Chu, X. Cao, J. Qin et al., Improved ammonia synthesis and energy output from zinc-nitrate batteries by spin-state regulation in perovskite oxides. J. Am. Chem. Soc. 147(4), 3119–3128 (2025). https://doi.org/10.1021/jacs.4c12240
K. Chu, W. Zong, G. Xue, H. Guo, J. Qin et al., Cation substitution strategy for developing perovskite oxide with rich oxygen vacancy-mediated charge redistribution enables highly efficient nitrate electroreduction to ammonia. J. Am. Chem. Soc. 145(39), 21387–21396 (2023). https://doi.org/10.1021/jacs.3c06402
T. Li, S. Han, C. Wang, Y. Huang, Y. Wang et al., Ru-doped Pd nanops for nitrogen electrooxidation to nitrate. ACS Catal. 11(22), 14032–14037 (2021). https://doi.org/10.1021/acscatal.1c04360
Z. Wang, J. Liu, H. Zhao, W. Xu, J. Liu et al., Free radicals promote electrocatalytic nitrogen oxidation. Chem. Sci. 14(7), 1878–1884 (2023). https://doi.org/10.1039/d2sc06599a
H. Mao, Y. Sun, H. Li, S. Li, D. Liu et al., Electrosynthesis of nitrate by Pd and TiO2 nanops anchored on 2-methylimidazolium functionalized polypyrrole/graphene oxide. Electrochim. Acta 482, 143978 (2024). https://doi.org/10.1016/j.electacta.2024.143978
Z. Nie, L. Zhang, X. Ding, M. Cong, F. Xu et al., Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru-nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru atoms. Adv. Mater. 34(14), 2108180 (2022). https://doi.org/10.1002/adma.202108180
Y. Zhang, F. Du, R. Wang, X. Ling, X. Wang et al., Electrocatalytic fixation of N2 into NO3−: electron transfer between oxygen vacancies and loaded Au in Nb2O5−x nanobelts to promote ambient nitrogen oxidation. J. Mater. Chem. A 9(32), 17442–17450 (2021). https://doi.org/10.1039/D1TA03128G
L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu et al., A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. Int. Ed. 59(27), 10888–10893 (2020). https://doi.org/10.1002/anie.202003518
H. Mao, H. Li, Y. Sun, S. Wu, Q. Wu et al., Electrosynthesis of nitrate by FeS2-TiO2 heterogeneous nanops supported on 2-methylimidazolium functionalized polypyrrole/graphene oxide. Chem. Eng. J. 489, 151414 (2024). https://doi.org/10.1016/j.cej.2024.151414
H. Mao, Y. Sun, H. Li, S. Wu, D. Liu et al., Synergy of Pd2+/S2−-doped TiO2 supported on 2-methylimidazolium-functionalized polypyrrole/graphene oxide for enhanced nitrogen electrooxidation. Adv. Mater. 36(16), 2313155 (2024). https://doi.org/10.1002/adma.202313155
T. Li, S. Han, C. Cheng, Y. Wang, X. Du et al., Sulfate-enabled nitrate synthesis from nitrogen electrooxidation on a rhodium electrocatalyst. Angew. Chem. Int. Ed. 61(26), e202204541 (2022). https://doi.org/10.1002/anie.202204541
G. Chen, C. Zhang, S. Xue, J. Liu, Y. Wang et al., A polarization boosted strategy for the modification of transition metal dichalcogenides as electrocatalysts for water-splitting. Small 17(26), 2100510 (2021). https://doi.org/10.1002/smll.202100510
L. Ma, Y. Li, Y. Xu, J. Sun, J. Liu et al., Two-dimensional transition metal dichalcogenides for electrocatalytic nitrogen fixation to ammonia: advances, challenges and perspectives. A mini review. Electrochem. Commun. 125, 107002 (2021). https://doi.org/10.1016/j.elecom.2021.107002
M. Wang, L. Zhang, Y. He, H. Zhu, Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 9(9), 5320–5363 (2021). https://doi.org/10.1039/d0ta12152e
H. Mao, Y. Fu, H. Yang, S. Zhang, J. Liu et al., Structure-activity relationship toward electrocatalytic nitrogen reduction of MoS2 growing on polypyrrole/graphene oxide affected by pyridinium-type ionic liquids. Chem. Eng. J. 425, 131769 (2021). https://doi.org/10.1016/j.cej.2021.131769
H. Mao, Y. Fu, H. Yang, Z.-Z. Deng, Y. Sun et al., Ultrathin 1T-MoS2 nanoplates induced by quaternary ammonium-type ionic liquids on polypyrrole/graphene oxide nanosheets and its irreversible crystal phase transition during electrocatalytic nitrogen reduction. ACS Appl. Mater. Interfaces 12(22), 25189–25199 (2020). https://doi.org/10.1021/acsami.0c05204
H. Mao, H. Yang, J. Liu, S. Zhang, D. Liu et al., Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide. Chin. J. Catal. 43(5), 1341–1350 (2022). https://doi.org/10.1016/S1872-2067(21)63944-X
D. Saraf, S. Chakraborty, A. Kshirsagar, R. Ahuja, In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy 49, 283–289 (2018). https://doi.org/10.1016/j.nanoen.2018.04.019
K. He, W. Xu, J. Tang, Y. Lu, C. Yi et al., Centimeter-scale PdS2 ultrathin films with high mobility and broadband photoresponse. Small 19(17), e2206915 (2023). https://doi.org/10.1002/smll.202206915
L. Pi, L. Li, K. Liu, Q. Zhang, H. Li et al., Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 29(51), 1904932 (2019). https://doi.org/10.1002/adfm.201904932
Y. Ma, X. Gong, F. Xiao, Y. Liu, X. Ming, First-principles study on the selective detection of toxic gases by 2D monolayer PdS2: insight into charge transfer dynamics and alignment of frontier molecular orbitals. ACS Appl. Nano Mater. 6(13), 12470–12478 (2023). https://doi.org/10.1021/acsanm.3c02177
R.O. Figueiredo, L. Seixas, Hydrogen-evolution reaction in two-dimensional PdS2 by phase and defect engineering. Phys. Rev. Applied 17(3), 034035 (2022). https://doi.org/10.1103/physrevapplied.17.034035
J. Li, D. Liang, G. Liu, B. Jia, J. Cao et al., Defect induced electrocatalytic hydrogen properties of pentagonal PdX2 (X = S, Se). RSC Adv. 11(61), 38478–38485 (2021). https://doi.org/10.1039/D1RA07466K
M. Ghorbani-Asl, A. Kuc, P. Miró, T. Heine, A single-material logical junction based on 2D crystal PdS2. Adv. Mater. 28(5), 853–856 (2016). https://doi.org/10.1002/adma.201504274
A. Guha, R. Sharma, K.R. Sahoo, A.B. Puthirath, N. Shyaga et al., One-dimensional hollow structures of 2O-PdS2 decorated carbon for water electrolysis. ACS Appl. Energy Mater. 4(9), 8715–8720 (2021). https://doi.org/10.1021/acsaem.1c01703
F. Karimi, M. Akin, R. Bayat, M. Bekmezci, R. Darabi et al., Application of quasihexagonal Pt@PdS2-MWCNT catalyst with high electrochemical performance for electro-oxidation of methanol, 2-propanol, and glycerol alcohols for fuel cells. Mol. Catal. 536, 112874 (2023). https://doi.org/10.1016/j.mcat.2022.112874
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong et al., Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 55(23), 6702–6707 (2016). https://doi.org/10.1002/anie.201602237
K. Chu, Y.-P. Liu, Y.-B. Li, Y.-L. Guo, Y. Tian, Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 12(6), 7081–7090 (2020). https://doi.org/10.1021/acsami.9b18263
J. Szanyi, J.H. Kwak, R.J. Chimentao, C.H.F. Peden, Effect of H2O on the adsorption of NO2 on γ-Al2O3: an in situ FTIR/MS study. J. Phys. Chem. C 111(6), 2661–2669 (2007). https://doi.org/10.1021/jp066326x
T. Venkov, K. Hadjiivanov, D. Klissurski, IR spectroscopy study of NO adsorption and NO + O2 co-adsorption on Al2O3. Phys. Chem. Chem. Phys. 4(11), 2443–2448 (2002). https://doi.org/10.1039/b111396h
T. Li, S. Han, Y. Wang, J. Zhou, B. Zhang et al., A spectroscopic study on nitrogen electrooxidation to nitrate. Angew. Chem. Int. Ed. 62(19), e202217411 (2023). https://doi.org/10.1002/anie.202217411
P. Miró, M. Ghorbani-Asl, T. Heine, Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew. Chem. Int. Ed. 53(11), 3015–3018 (2014). https://doi.org/10.1002/anie.201309280
X. Zhang, G. Su, J. Lu, W. Yang, W. Zhuang et al., Centimeter-scale few-layer PdS2: fabrication and physical properties. ACS Appl. Mater. Interfaces 13(36), 43063–43074 (2021). https://doi.org/10.1021/acsami.1c11824
A. Taherkhani, S.Z. Mortazavi, S. Ahmadi, A. Reyhani, Synchrotron EXAFS spectroscopy and density functional theory studies of Pd/MoS2 Schottky-type nano/hetero-junctions. Appl. Surf. Sci. 604, 154557 (2022). https://doi.org/10.1016/j.apsusc.2022.154557
M. Xiang, L. He, Q. Su, B. Sun, N. Wang et al., Supercapacitor properties of N/S/O Co-doped and hydrothermally sculpted porous carbon cloth in pH-universal aqueous electrolytes: mechanism of performance enhancement. Chem. Eng. J. 485, 149835 (2024). https://doi.org/10.1016/j.cej.2024.149835
J. Liu, S.C. Smith, Y. Gu, L. Kou, C─N coupling enabled by N─N bond breaking for electrochemical urea production. Adv. Funct. Mater. 33(47), 2305894 (2023). https://doi.org/10.1002/adfm.202305894
C. Dai, Y. Sun, G. Chen, A.C. Fisher, Z.J. Xu, Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew. Chem. Int. Ed. 59(24), 9418–9422 (2020). https://doi.org/10.1002/anie.202002923
H. Liao, T. Luo, P. Tan, K. Chen, L. Lu et al., Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 31(38), 2102772 (2021). https://doi.org/10.1002/adfm.202102772
Q. Chen, Q. Zhang, B. Chen, J. Zhang, W. Peng et al., Enhanced long-term performance of sulfides in oxygen evolution reaction by sulfate ion-assisted strategy. Adv. Funct. Mater. 34(44), 2406233 (2024). https://doi.org/10.1002/adfm.202406233
M. Kuang, Y. Wang, W. Fang, H. Tan, M. Chen et al., Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 32(26), 2002189 (2020). https://doi.org/10.1002/adma.202002189
M. Anand, C.S. Abraham, J.K. Nørskov, Electrochemical oxidation of molecular nitrogen to nitric acid–towards a molecular level understanding of the challenges. Chem. Sci. 12(18), 6442–6448 (2021). https://doi.org/10.1039/D1SC00752A
C.E. Hamilton, J.R. Lomeda, Z. Sun, J.M. Tour, A.R. Barron, Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 3(2), 138–145 (2010). https://doi.org/10.1007/s12274-010-1007-3
Y. Cai, J. Li, L. Yi, X. Yan, J. Li, Fabricating superhydrophobic and oleophobic surface with silica nanops modified by silanes and environment-friendly fluorinated chemicals. Appl. Surf. Sci. 450, 102–111 (2018). https://doi.org/10.1016/j.apsusc.2018.04.186
G. Yu, J. Wang, H. Ma, X. Liu, S. Qin et al., Exploring abundantly synergic effects of K-Cu supported paper catalysts using TiO2-ZrO2 mesoporous fibers as matrix towards soot efficient oxidation. Chem. Eng. J. 417, 128111 (2021). https://doi.org/10.1016/j.cej.2020.128111
H. Che, J. Wang, X. Gao, J. Chen, P. Wang et al., Regulating directional transfer of electrons on polymeric g-C3N5 for highly efficient photocatalytic H2O2 production. J. Colloid Interface Sci. 627, 739–748 (2022). https://doi.org/10.1016/j.jcis.2022.07.080
D. Wang, W. Gong, J. Zhang, G. Wang, H. Zhang et al., In situ growth of MOFs on Ni(OH)2 for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural. Chem. Commun. 57(86), 11358–11361 (2021). https://doi.org/10.1039/D1CC04680B
H. Wang, G. Yan, M. Li, H. Ji, Y. Feng et al., Nucleophilic ring-opening of thiolactones: a facile method for sulfhydrylization of a carbon nanotube-based cathode toward high-performance Li–S batteries. ACS Sustain. Chem. Eng. 10(15), 5005–5014 (2022). https://doi.org/10.1021/acssuschemeng.2c00204
F. Luo, P. Yu, J. Xiang, J. Jiang, S. Chen, In situ generation of oxyanions-decorated cobalt(nickel) oxyhydroxide catalyst with high corrosion resistance for stable and efficient seawater oxidation. J. Energy Chem. 94, 508–516 (2024). https://doi.org/10.1016/j.jechem.2024.03.006
G. Liu, L. Ding, Y. Meng, A. Ali, G. Zuo et al., A review on ultra-small undoped MoS2 as advanced catalysts for renewable fuel production. Carbon Energy 6(2), e521 (2024). https://doi.org/10.1002/cey2.521
S. Liu, X. Zhang, S. Wu, X. Chen, X. Yang et al., Crepe cake structured layered double hydroxide/sulfur/graphene as a positive electrode material for Li-S batteries. ACS Nano 14(7), 8220–8231 (2020). https://doi.org/10.1021/acsnano.0c01694