A Synchronous Strategy to Zn-Iodine Battery by Polycationic Long-Chain Molecules
Corresponding Author: Hong Jin Fan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 3
Abstract
Aqueous Zn-iodine batteries (ZIBs) face the formidable challenges towards practical implementation, including metal corrosion and rampant dendrite growth on the Zn anode side, and shuttle effect of polyiodide species from the cathode side. These challenges lead to poor cycle stability and severe self-discharge. From the fabrication and cost point of view, it is technologically more viable to deploy electrolyte engineering than electrode protection strategies. More importantly, a synchronous method for modulation of both cathode and anode is pivotal, which has been often neglected in prior studies. In this work, cationic poly(allylamine hydrochloride) (Pah+) is adopted as a low-cost dual-function electrolyte additive for ZIBs. We elaborate the synchronous effect by Pah+ in stabilizing Zn anode and immobilizing polyiodide anions. The fabricated Zn-iodine coin cell with Pah+ (ZnI2 loading: 25 mg cm−2) stably cycles 1000 times at 1 C, and a single-layered 3 × 4 cm2 pouch cell (N/P ratio ~ 1.5) with the same mass loading cycles over 300 times with insignificant capacity decay.
Highlights:
1 A long chain polycation (Pah⁺) is propos ed to simultaneously regulate Zn anode deposition , mitigate side reactions and stabilize iodine cathode chemistry.
2 The iodophilic and low diffusivity nature of Pah enables effective polyiodide immobilization, suppressing the shuttle effect and ensuring a stable redox environment.
3 The Zn iodine battery delivers high areal capacity (~4 mAh cm−2 at 1 C) and excellent durability, with 95% capacity retained over 1000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
- H. Chen, X. Li, K. Fang, H. Wang, J. Ning et al., Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv. Energy Mater. 13(41), 2302187 (2023). https://doi.org/10.1002/aenm.202302187
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- G. Li, X. Wang, S. Lv, J. Wang, W. Yu et al., In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition. Adv. Funct. Mater. 33(4), 2208288 (2023). https://doi.org/10.1002/adfm.202208288
- Z. Zheng, X. Zhong, Q. Zhang, M. Zhang, L. Dai et al., An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 15, 753 (2024). https://doi.org/10.1038/s41467-024-44893-0
- X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15(1), 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
- L. Yuan, J. Hao, B. Johannessen, C. Ye, F. Yang et al., Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3(2), 100096 (2023). https://doi.org/10.1016/j.esci.2023.100096
- D.-Q. Cai, H. Cheng, J.-L. Yang, H. Liu, T. Xiao et al., Understanding the structure–activity relationship of additives for durable Zn metal batteries: a case study of aromatic molecules. Energy Environ. Sci. 17(21), 8349–8359 (2024). https://doi.org/10.1039/D4EE03232B
- Y. Li, X. Liu, M. Zhang, D. Sheng, P. Ren et al., Optimization strategy of surface and interface in electrolyte structure of aqueous zinc-ion battery. ACS Mater. Lett. 6(5), 1938–1960 (2024). https://doi.org/10.1021/acsmaterialslett.4c00308
- X. Cai, X. Wang, Z. Bie, Z. Jiao, Y. Li et al., A layer-by-layer self-assembled bio-macromolecule film for stable zinc anode. Adv. Mater. 36(3), e2306734 (2024). https://doi.org/10.1002/adma.202306734
- T. Li, X. Li, H. Yang, Y. Zhou, X. Li et al., Multifunctional optimization enabled by the space design of a nontoxic fluoride protective layer for dendrites-free and corrosion-resistant zinc anodes. Mater. Today Energy 40, 101513 (2024). https://doi.org/10.1016/j.mtener.2024.101513
- X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15(1), 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
- Z. Cai, H. Wang, T. Wu, H. Ji, Y. Tang et al., Accelerating Zn2+ kinetics and regulating zinc anode interface for high stable aqueous zinc-ion batteries. Mater. Today Energy 43, 101592 (2024). https://doi.org/10.1016/j.mtener.2024.101592
- I. Aguilar, J. Brown, L. Godeffroy, F. Dorchies, V. Balland et al., A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design. Joule 9(1), 101784 (2025). https://doi.org/10.1016/j.joule.2024.11.001
- M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma et al., Physicochemical confinement effect enables high-performing zinc-iodine batteries. J. Am. Chem. Soc. 144(47), 21683–21691 (2022). https://doi.org/10.1021/jacs.2c09445
- F. Yang, J. Long, J.A. Yuwono, H. Fei, Y. Fan et al., Single atom catalysts for triiodide adsorption and fast conversion to boost the performance of aqueous zinc–iodine batteries. Energy Environ. Sci. 16(10), 4630–4640 (2023). https://doi.org/10.1039/D3EE01453C
- P. Hei, Y. Sai, W. Li, J. Meng, Y. Lin et al., Diatomic catalysts for aqueous zinc-iodine batteries: mechanistic insights and design strategies. Angew. Chem. Int. Ed. 63(49), e202410848 (2024). https://doi.org/10.1002/anie.202410848
- X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
- L. Ma, G. Zhu, Z. Wang, A. Zhu, K. Wu et al., Long-lasting zinc-iodine batteries with ultrahigh areal capacity and boosted rate capability enabled by nickel single-atom electrocatalysts. Nano Lett. 23(11), 5272–5280 (2023). https://doi.org/10.1021/acs.nanolett.3c01310
- F. Wang, W. Liang, X. Liu, T. Yin, Z. Chen et al., A bifunctional electrolyte additive features preferential coordination with iodine toward ultralong-life zinc–iodine batteries. Adv. Energy Mater. 14(21), 2400110 (2024). https://doi.org/10.1002/aenm.202400110
- W. Yan, Y. Liu, J. Qiu, F. Tan, J. Liang et al., A tripartite synergistic optimization strategy for zinc-iodine batteries. Nat. Commun. 15(1), 9702 (2024). https://doi.org/10.1038/s41467-024-53800-6
- T. Xiao, J.L. Yang, D. Chao, H.J. Fan, Multimodal electrolyte architecting for static aqueous zinc-halogen batteries. Natl. Sci. Rev. 12(7), nwaf029 (2025). https://doi.org/10.1093/nsr/nwaf029
- J. Bu, P. Liu, G. Ou, M. Ye, Z. Wen et al., Interfacial adsorption layers based on amino acid analogues to enable dual stabilization toward long-life aqueous zinc iodine batteries. Adv. Mater. 37(19), 2420221 (2025). https://doi.org/10.1002/adma.202420221
- X. Yang, L. Zhang, J. Zhu, L. Wang, Y. Zhang et al., Lewis acid-base effect and protonation in electrolyte engineering enable shuttle-free, dendrite-free, and HER-free aqueous Zn-I2 batteries. Energy Storage Mater. 78, 104268 (2025). https://doi.org/10.1016/j.ensm.2025.104268
- J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/d3ee03297c
- T. Xiao, J.-L. Yang, B. Zhang, J. Wu, J. Li et al., All-round ionic liquids for shuttle-free zinc-iodine battery. Angew. Chem. Int. Ed. 63(8), e202318470 (2024). https://doi.org/10.1002/anie.202318470
- W. Zong, J. Li, C. Zhang, Y. Dai, Y. Ouyang et al., Dynamical Janus interface design for reversible and fast-charging zinc-iodine battery under extreme operating conditions. J. Am. Chem. Soc. 146(31), 21377–21388 (2024). https://doi.org/10.1021/jacs.4c03615
- J.-L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics. Adv. Mater. 35(44), 2306531 (2023). https://doi.org/10.1002/adma.202306531
- H. Zhao, D. Yin, Y. Qin, X. Cui, J. Feng et al., Highly electrically conductive polyiodide ionic liquid cathode for high-capacity dual-plating zinc-iodine batteries. J. Am. Chem. Soc. 146(10), 6744–6752 (2024). https://doi.org/10.1021/jacs.3c12695
- T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- M. Ernzerhof, G.E. Scuseria, Assessment of the perdew–burke–ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029–5036 (1999). https://doi.org/10.1063/1.478401
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
- G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105(28), 6474–6487 (2001). https://doi.org/10.1021/jp003919d
- X. Wang, W. Zhou, L. Wang, Y. Zhang, S. Li et al., Benchmarking corrosion with anionic polarity index for stable and fast aqueous batteries even in low-concentration electrolyte. Adv. Mater. 37(14), 2501049 (2025). https://doi.org/10.1002/adma.202501049
- R.T. Mathew, R.P. Cooney, C.S. Doyle, S. Swift, C. Haessler, Anchored quaternary ammonium salts adsorbed on polyurethane film surfaces. Prog. Org. Coat. 138, 105343 (2020). https://doi.org/10.1016/j.porgcoat.2019.105343
- G. Gao, X. Huo, B. Li, J. Bi, Z. Zhou et al., Customizing the water-scarce, zinc ion-rich Helmholtz plane of a zinc anode for Ah-scale Zn metal batteries. Energy Environ. Sci. 17(20), 7850–7859 (2024). https://doi.org/10.1039/D4EE02909G
- L. Zhang, L. Miao, W. Xin, H. Peng, Z. Yan et al., Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Mater. 44, 408–415 (2022). https://doi.org/10.1016/j.ensm.2021.10.033
- R. Hao, S. Gu, Z. Wang, J. Chen, W. Luo et al., Reconstructing the solvation structure and solid-liquid interface enables dendrite-free zinc-ion batteries. Mater. Today Energy 33, 101279 (2023). https://doi.org/10.1016/j.mtener.2023.101279
- T. Wu, C. Hu, Q. Zhang, Z. Yang, G. Jin et al., Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc-ion batteries. Adv. Funct. Mater. 34(30), 2315716 (2024). https://doi.org/10.1002/adfm.202315716
- Q. Meng, Q. Bai, R. Zhao, P. Cao, G. Zhang et al., Attenuating water activity through impeded proton transfer resulting from hydrogen bond enhancement effect for fast and ultra-stable Zn metal anode. Adv. Energy Mater. 13(44), 2302828 (2023). https://doi.org/10.1002/aenm.202302828
- R. Huang, J. Zhang, W. Wang, X. Wu, X. Liao et al., Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes. Energy Environ. Sci. 17(9), 3179–3190 (2024). https://doi.org/10.1039/D4EE00109E
- H. Ma, J. Yu, M. Chen, X. Han, J. Chen et al., Amino-enabled desolvation sieving effect realizes dendrite-inhibiting thin separator for durable aqueous zinc-ion batteries. Adv. Funct. Mater. 33(52), 2307384 (2023). https://doi.org/10.1002/adfm.202307384
- Z. Cai, J. Wang, Y. Sun, Anode corrosion in aqueous Zn metal batteries. eScience 3(1), 100093 (2023). https://doi.org/10.1016/j.esci.2023.100093
- Z. Mi, T. Wang, L. Xiao, G. Wang, L. Zhuang, Catalytic peculiarity of alkali metal cation-free electrode/polyelectrolyte interfaces toward CO2 reduction. J. Am. Chem. Soc. 146(25), 17377–17383 (2024). https://doi.org/10.1021/jacs.4c04591
- A. Maradesa, B. Py, J. Huang, Y. Lu, P. Iurilli et al., Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method. Joule 8(7), 1958–1981 (2024). https://doi.org/10.1016/j.joule.2024.05.008
- M. Yan, C. Xu, Y. Sun, H. Pan, H. Li, Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy 82, 105739 (2021). https://doi.org/10.1016/j.nanoen.2020.105739
- S. Gao, J. Han, Z. Liu, K. Wang, K. Jiang et al., Polyvinyl pyrrolidone as electrolyte additive for aqueous zinc batteries with MnO2 cathode. J. Electrochem. Soc. 168(8), 080514 (2021). https://doi.org/10.1149/1945-7111/ac1a55
- L. Miao, W. Jia, L. Jiao, Effects of current density on Zn reversibility. Chem. Sci. 15(44), 18227–18238 (2024). https://doi.org/10.1039/d4sc06319h
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
- J.-L. Yang, P. Yang, T. Xiao, H.J. Fan, Designing single-ion conductive electrolytes for aqueous zinc batteries. Matter 7(6), 1928–1949 (2024). https://doi.org/10.1016/j.matt.2024.03.014
- H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
- W. Fan, C. Zhu, X. Wang, H. Wang, Y. Zhu et al., All-natural charge gradient interface for sustainable seawater zinc batteries. Nat. Commun. 16(1), 1273 (2025). https://doi.org/10.1038/s41467-025-56519-0
- J.-L. Yang, H.-H. Liu, X.-X. Zhao, X.-Y. Zhang, K.-Y. Zhang et al., Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn-I2 batteries. J. Am. Chem. Soc. 146(10), 6628–6637 (2024). https://doi.org/10.1021/jacs.3c12638
- J. Wu, J.-L. Yang, B. Zhang, H.J. Fan, Immobilizing polyiodides with expanded Zn2+ channels for high-rate practical zinc-iodine battery. Adv. Energy Mater. 14(3), 2302738 (2024). https://doi.org/10.1002/aenm.202302738
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- M. Unni, S. Savliwala, B.D. Partain, L. Maldonado-Camargo, Q. Zhang et al., Fast nanop rotational and translational diffusion in synovial fluid and hyaluronic acid solutions. Sci. Adv. 7(27), eabf8467 (2021). https://doi.org/10.1126/sciadv.abf8467
- Y. Wang, X. Jin, J. Xiong, Q. Zhu, Q. Li et al., Ultrastable electrolytic Zn–I2 batteries based on nanocarbon wrapped by highly efficient single-atom Fe-NC iodine catalysts. Adv. Mater. 36(30), 2404093 (2024). https://doi.org/10.1002/adma.202404093
- H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc-iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. (2024). https://doi.org/10.1021/jacs.4c03518
- M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett. 6(9), 3236–3243 (2021). https://doi.org/10.1021/acsenergylett.1c01418
References
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
H. Chen, X. Li, K. Fang, H. Wang, J. Ning et al., Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv. Energy Mater. 13(41), 2302187 (2023). https://doi.org/10.1002/aenm.202302187
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
G. Li, X. Wang, S. Lv, J. Wang, W. Yu et al., In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition. Adv. Funct. Mater. 33(4), 2208288 (2023). https://doi.org/10.1002/adfm.202208288
Z. Zheng, X. Zhong, Q. Zhang, M. Zhang, L. Dai et al., An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 15, 753 (2024). https://doi.org/10.1038/s41467-024-44893-0
X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15(1), 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
L. Yuan, J. Hao, B. Johannessen, C. Ye, F. Yang et al., Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3(2), 100096 (2023). https://doi.org/10.1016/j.esci.2023.100096
D.-Q. Cai, H. Cheng, J.-L. Yang, H. Liu, T. Xiao et al., Understanding the structure–activity relationship of additives for durable Zn metal batteries: a case study of aromatic molecules. Energy Environ. Sci. 17(21), 8349–8359 (2024). https://doi.org/10.1039/D4EE03232B
Y. Li, X. Liu, M. Zhang, D. Sheng, P. Ren et al., Optimization strategy of surface and interface in electrolyte structure of aqueous zinc-ion battery. ACS Mater. Lett. 6(5), 1938–1960 (2024). https://doi.org/10.1021/acsmaterialslett.4c00308
X. Cai, X. Wang, Z. Bie, Z. Jiao, Y. Li et al., A layer-by-layer self-assembled bio-macromolecule film for stable zinc anode. Adv. Mater. 36(3), e2306734 (2024). https://doi.org/10.1002/adma.202306734
T. Li, X. Li, H. Yang, Y. Zhou, X. Li et al., Multifunctional optimization enabled by the space design of a nontoxic fluoride protective layer for dendrites-free and corrosion-resistant zinc anodes. Mater. Today Energy 40, 101513 (2024). https://doi.org/10.1016/j.mtener.2024.101513
X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15(1), 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
Z. Cai, H. Wang, T. Wu, H. Ji, Y. Tang et al., Accelerating Zn2+ kinetics and regulating zinc anode interface for high stable aqueous zinc-ion batteries. Mater. Today Energy 43, 101592 (2024). https://doi.org/10.1016/j.mtener.2024.101592
I. Aguilar, J. Brown, L. Godeffroy, F. Dorchies, V. Balland et al., A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design. Joule 9(1), 101784 (2025). https://doi.org/10.1016/j.joule.2024.11.001
M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma et al., Physicochemical confinement effect enables high-performing zinc-iodine batteries. J. Am. Chem. Soc. 144(47), 21683–21691 (2022). https://doi.org/10.1021/jacs.2c09445
F. Yang, J. Long, J.A. Yuwono, H. Fei, Y. Fan et al., Single atom catalysts for triiodide adsorption and fast conversion to boost the performance of aqueous zinc–iodine batteries. Energy Environ. Sci. 16(10), 4630–4640 (2023). https://doi.org/10.1039/D3EE01453C
P. Hei, Y. Sai, W. Li, J. Meng, Y. Lin et al., Diatomic catalysts for aqueous zinc-iodine batteries: mechanistic insights and design strategies. Angew. Chem. Int. Ed. 63(49), e202410848 (2024). https://doi.org/10.1002/anie.202410848
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
L. Ma, G. Zhu, Z. Wang, A. Zhu, K. Wu et al., Long-lasting zinc-iodine batteries with ultrahigh areal capacity and boosted rate capability enabled by nickel single-atom electrocatalysts. Nano Lett. 23(11), 5272–5280 (2023). https://doi.org/10.1021/acs.nanolett.3c01310
F. Wang, W. Liang, X. Liu, T. Yin, Z. Chen et al., A bifunctional electrolyte additive features preferential coordination with iodine toward ultralong-life zinc–iodine batteries. Adv. Energy Mater. 14(21), 2400110 (2024). https://doi.org/10.1002/aenm.202400110
W. Yan, Y. Liu, J. Qiu, F. Tan, J. Liang et al., A tripartite synergistic optimization strategy for zinc-iodine batteries. Nat. Commun. 15(1), 9702 (2024). https://doi.org/10.1038/s41467-024-53800-6
T. Xiao, J.L. Yang, D. Chao, H.J. Fan, Multimodal electrolyte architecting for static aqueous zinc-halogen batteries. Natl. Sci. Rev. 12(7), nwaf029 (2025). https://doi.org/10.1093/nsr/nwaf029
J. Bu, P. Liu, G. Ou, M. Ye, Z. Wen et al., Interfacial adsorption layers based on amino acid analogues to enable dual stabilization toward long-life aqueous zinc iodine batteries. Adv. Mater. 37(19), 2420221 (2025). https://doi.org/10.1002/adma.202420221
X. Yang, L. Zhang, J. Zhu, L. Wang, Y. Zhang et al., Lewis acid-base effect and protonation in electrolyte engineering enable shuttle-free, dendrite-free, and HER-free aqueous Zn-I2 batteries. Energy Storage Mater. 78, 104268 (2025). https://doi.org/10.1016/j.ensm.2025.104268
J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/d3ee03297c
T. Xiao, J.-L. Yang, B. Zhang, J. Wu, J. Li et al., All-round ionic liquids for shuttle-free zinc-iodine battery. Angew. Chem. Int. Ed. 63(8), e202318470 (2024). https://doi.org/10.1002/anie.202318470
W. Zong, J. Li, C. Zhang, Y. Dai, Y. Ouyang et al., Dynamical Janus interface design for reversible and fast-charging zinc-iodine battery under extreme operating conditions. J. Am. Chem. Soc. 146(31), 21377–21388 (2024). https://doi.org/10.1021/jacs.4c03615
J.-L. Yang, Z. Yu, J. Wu, J. Li, L. Chen et al., Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics. Adv. Mater. 35(44), 2306531 (2023). https://doi.org/10.1002/adma.202306531
H. Zhao, D. Yin, Y. Qin, X. Cui, J. Feng et al., Highly electrically conductive polyiodide ionic liquid cathode for high-capacity dual-plating zinc-iodine batteries. J. Am. Chem. Soc. 146(10), 6744–6752 (2024). https://doi.org/10.1021/jacs.3c12695
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
M. Ernzerhof, G.E. Scuseria, Assessment of the perdew–burke–ernzerhof exchange-correlation functional. J. Chem. Phys. 110(11), 5029–5036 (1999). https://doi.org/10.1063/1.478401
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
G.A. Kaminski, R.A. Friesner, J. Tirado-Rives, W.L. Jorgensen, Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105(28), 6474–6487 (2001). https://doi.org/10.1021/jp003919d
X. Wang, W. Zhou, L. Wang, Y. Zhang, S. Li et al., Benchmarking corrosion with anionic polarity index for stable and fast aqueous batteries even in low-concentration electrolyte. Adv. Mater. 37(14), 2501049 (2025). https://doi.org/10.1002/adma.202501049
R.T. Mathew, R.P. Cooney, C.S. Doyle, S. Swift, C. Haessler, Anchored quaternary ammonium salts adsorbed on polyurethane film surfaces. Prog. Org. Coat. 138, 105343 (2020). https://doi.org/10.1016/j.porgcoat.2019.105343
G. Gao, X. Huo, B. Li, J. Bi, Z. Zhou et al., Customizing the water-scarce, zinc ion-rich Helmholtz plane of a zinc anode for Ah-scale Zn metal batteries. Energy Environ. Sci. 17(20), 7850–7859 (2024). https://doi.org/10.1039/D4EE02909G
L. Zhang, L. Miao, W. Xin, H. Peng, Z. Yan et al., Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Mater. 44, 408–415 (2022). https://doi.org/10.1016/j.ensm.2021.10.033
R. Hao, S. Gu, Z. Wang, J. Chen, W. Luo et al., Reconstructing the solvation structure and solid-liquid interface enables dendrite-free zinc-ion batteries. Mater. Today Energy 33, 101279 (2023). https://doi.org/10.1016/j.mtener.2023.101279
T. Wu, C. Hu, Q. Zhang, Z. Yang, G. Jin et al., Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc-ion batteries. Adv. Funct. Mater. 34(30), 2315716 (2024). https://doi.org/10.1002/adfm.202315716
Q. Meng, Q. Bai, R. Zhao, P. Cao, G. Zhang et al., Attenuating water activity through impeded proton transfer resulting from hydrogen bond enhancement effect for fast and ultra-stable Zn metal anode. Adv. Energy Mater. 13(44), 2302828 (2023). https://doi.org/10.1002/aenm.202302828
R. Huang, J. Zhang, W. Wang, X. Wu, X. Liao et al., Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes. Energy Environ. Sci. 17(9), 3179–3190 (2024). https://doi.org/10.1039/D4EE00109E
H. Ma, J. Yu, M. Chen, X. Han, J. Chen et al., Amino-enabled desolvation sieving effect realizes dendrite-inhibiting thin separator for durable aqueous zinc-ion batteries. Adv. Funct. Mater. 33(52), 2307384 (2023). https://doi.org/10.1002/adfm.202307384
Z. Cai, J. Wang, Y. Sun, Anode corrosion in aqueous Zn metal batteries. eScience 3(1), 100093 (2023). https://doi.org/10.1016/j.esci.2023.100093
Z. Mi, T. Wang, L. Xiao, G. Wang, L. Zhuang, Catalytic peculiarity of alkali metal cation-free electrode/polyelectrolyte interfaces toward CO2 reduction. J. Am. Chem. Soc. 146(25), 17377–17383 (2024). https://doi.org/10.1021/jacs.4c04591
A. Maradesa, B. Py, J. Huang, Y. Lu, P. Iurilli et al., Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method. Joule 8(7), 1958–1981 (2024). https://doi.org/10.1016/j.joule.2024.05.008
M. Yan, C. Xu, Y. Sun, H. Pan, H. Li, Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy 82, 105739 (2021). https://doi.org/10.1016/j.nanoen.2020.105739
S. Gao, J. Han, Z. Liu, K. Wang, K. Jiang et al., Polyvinyl pyrrolidone as electrolyte additive for aqueous zinc batteries with MnO2 cathode. J. Electrochem. Soc. 168(8), 080514 (2021). https://doi.org/10.1149/1945-7111/ac1a55
L. Miao, W. Jia, L. Jiao, Effects of current density on Zn reversibility. Chem. Sci. 15(44), 18227–18238 (2024). https://doi.org/10.1039/d4sc06319h
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
J.-L. Yang, P. Yang, T. Xiao, H.J. Fan, Designing single-ion conductive electrolytes for aqueous zinc batteries. Matter 7(6), 1928–1949 (2024). https://doi.org/10.1016/j.matt.2024.03.014
H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
W. Fan, C. Zhu, X. Wang, H. Wang, Y. Zhu et al., All-natural charge gradient interface for sustainable seawater zinc batteries. Nat. Commun. 16(1), 1273 (2025). https://doi.org/10.1038/s41467-025-56519-0
J.-L. Yang, H.-H. Liu, X.-X. Zhao, X.-Y. Zhang, K.-Y. Zhang et al., Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn-I2 batteries. J. Am. Chem. Soc. 146(10), 6628–6637 (2024). https://doi.org/10.1021/jacs.3c12638
J. Wu, J.-L. Yang, B. Zhang, H.J. Fan, Immobilizing polyiodides with expanded Zn2+ channels for high-rate practical zinc-iodine battery. Adv. Energy Mater. 14(3), 2302738 (2024). https://doi.org/10.1002/aenm.202302738
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6(6), 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
M. Unni, S. Savliwala, B.D. Partain, L. Maldonado-Camargo, Q. Zhang et al., Fast nanop rotational and translational diffusion in synovial fluid and hyaluronic acid solutions. Sci. Adv. 7(27), eabf8467 (2021). https://doi.org/10.1126/sciadv.abf8467
Y. Wang, X. Jin, J. Xiong, Q. Zhu, Q. Li et al., Ultrastable electrolytic Zn–I2 batteries based on nanocarbon wrapped by highly efficient single-atom Fe-NC iodine catalysts. Adv. Mater. 36(30), 2404093 (2024). https://doi.org/10.1002/adma.202404093
H. Wu, J. Hao, S. Zhang, Y. Jiang, Y. Zhu et al., Aqueous zinc-iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc. (2024). https://doi.org/10.1021/jacs.4c03518
M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett. 6(9), 3236–3243 (2021). https://doi.org/10.1021/acsenergylett.1c01418