Lattice Anchoring Stabilizes α-FAPbI3 Perovskite for High-Performance X-Ray Detectors
Corresponding Author: Dai‑Bin Kuang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 14
Abstract
Formamidinium lead iodide (FAPbI3) perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product (µτ), making it as a highly promising candidate for X-ray detection application. However, the presence of larger FA+ cation induces to an expansion of the Pb-I octahedral framework, which unfortunately affects both the stability and charge carrier mobility of the corresponding devices. To address this challenge, we develop a novel low-dimensional (HtrzT)PbI3 perovskite featuring a conjugated organic cation (1H-1,2,4-Triazole-3-thiol, HtrzT+) which matches well with the α-FAPbI3 lattices in two-dimensional plane. Benefiting from the matched lattice between (HtrzT)PbI3 and α-FAPbI3, the anchored lattice enhances the Pb-I bond strength and effectively mitigates the inherent tensile strain of the α-FAPbI3 crystal lattice. The X-ray detector based on (HtrzT)PbI3(1.0)/FAPbI3 device achieves a remarkable sensitivity up to 1.83 × 105 μC Gyair−1 cm−2, along with a low detection limit of 27.6 nGyair s−1, attributed to the release of residual stress, and the enhancement in carrier mobility-lifetime product. Furthermore, the detector exhibits outstanding stability under X-ray irradiation with tolerating doses equivalent to nearly 1.17 × 106 chest imaging doses.
Highlights:
1 A lattice-anchoring strategy using low-dimensional perovskite addresses structural instability in α-formamidinium lead iodide (FAPbI3) by matching crystal lattice, mitigating residual stress and tensile strain.
2 Enhanced Pb-I bonding strength and reduced lattice strain improve structural stability and carrier mobility-lifetime product, enabling efficient charge transport.
3 Optimized X-ray detectors achieve high sensitivity (1.83 × 105 μC Gyair–1 cm–2), low detection limit (27.6 nGyair s–1), and stable performance under prolonged irradiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10(1), 1066 (2019). https://doi.org/10.1038/s41467-019-08981-w
- H.M. Thirimanne, K.I. Jayawardena, A.J. Parnell, R.I. Bandara, A. Karalasingam et al., High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9(1), 2926 (2018). https://doi.org/10.1038/s41467-018-05301-6
- W. Zhao, W.G. Ji, A. Debrie, J.A. Rowlands, Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector. Med. Phys. 30(2), 254–263 (2003). https://doi.org/10.1118/1.1538233
- T. Takahashi, S. Watanabe, Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001). https://doi.org/10.1109/23.958705
- Q. Guan, S. You, Z.-K. Zhu, R. Li, H. Ye et al., Three-dimensional polar perovskites for highly sensitive self-driven X-ray detection. Angew. Chem. Int. Ed. 63(11), e202320180 (2024). https://doi.org/10.1002/anie.202320180
- M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16(1), 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
- Y. Li, Y. Lei, H. Wang, Z. Jin, Two-dimensional metal halides for X-ray detection applications. Nano-Micro Lett. 15(1), 128 (2023). https://doi.org/10.1007/s40820-023-01118-1
- Y. He, I. Hadar, M.G. Kanatzidis, Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16(1), 14–26 (2021). https://doi.org/10.1038/s41566-021-00909-5
- X. Yang, Y.-H. Huang, X.-D. Wang, W.-G. Li, D.-B. Kuang, A-site diamine cation anchoring enables efficient charge transfer and suppressed ion migration in Bi-based hybrid perovskite single crystals. Angew. Chem. Int. Ed. 134(29), e202204663 (2022). https://doi.org/10.1002/ange.202204663
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Solar cells. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- M. Lv, N. Li, G. Jin, X. Du, X. Tao et al., Phase-stable FAPbI3-based single crystals with 600-μm electron diffusion length. Matter 6(12), 4388–4400 (2023). https://doi.org/10.1016/j.matt.2023.10.021
- S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9(7), 444–449 (2015). https://doi.org/10.1038/nphoton.2015.82
- Y.C. Kim, K.H. Kim, D.Y. Son, D.N. Jeong, J.Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
- S. Tie, W. Zhao, D. Xin, M. Zhang, J. Long et al., Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater. 32(31), e2001981 (2020). https://doi.org/10.1002/adma.202001981
- E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9(11), 3406–3410 (2016). https://doi.org/10.1039/C6EE02016J
- Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren et al., 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Optical Mater. 4(11), 1829–1837 (2016). https://doi.org/10.1002/adom.201600327
- D. Chu, B. Jia, N. Liu, Y. Zhang, X. Li et al., Lattice engineering for stabilized black FAPbI3 perovskite single crystals for high-resolution X-ray imaging at the lowest dose. Sci. Adv. 9(35), eadh2255 (2023). https://doi.org/10.1126/sciadv.adh2255
- A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014). https://doi.org/10.1021/nl5012992
- S. Masi, A.F. Gualdrón-Reyes, I. Mora-Seró, Stabilization of black perovskite phase in FAPbI3 and CsPbI3. ACS Energy Lett. 5(6), 1974–1985 (2020). https://doi.org/10.1021/acsenergylett.0c00801
- Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos et al., Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33(8), e2006010 (2021). https://doi.org/10.1002/adma.202006010
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
- H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), eabb8985 (2020). https://doi.org/10.1126/science.abb8985
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- Y.H. Park, I. Jeong, S. Bae, H.J. Son, P. Lee et al., Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv. Funct. Mater. 27(16), 1605988 (2017). https://doi.org/10.1002/adfm.201605988
- H.-S. Kim, N.-G. Park, Soft lattice and phase stability of α-FAPbI3. Adv. Energy Mater. 15(2), 2400089 (2025). https://doi.org/10.1002/aenm.202400089
- W. Jiang, H. Li, D. Liu, J. Ren, Y. Zhao et al., Synergetic electrostatic and steric effects in α-FAPbI3 single crystals for X-ray detection and imaging. Small 20(38), 2402277 (2024). https://doi.org/10.1002/smll.202402277
- S. You, P. Yu, J. Wu, Z.-K. Zhu, Q. Guan et al., Weak X-ray to visible lights detection enabled by a 2D multilayered lead iodide perovskite with iodine-substituted spacer. Adv. Sci. 10(21), 2301149 (2023). https://doi.org/10.1002/advs.202301149
- W. Feng, X. Liu, G. Liu, G. Yang, Y. Fang et al., Blade-coating (100)-oriented α-FAPbI3 perovskite films via crystal surface energy regulation for efficient and stable inverted perovskite photovoltaics. Angew. Chem. Int. Ed. 63(39), e202403196 (2024). https://doi.org/10.1002/anie.202403196
- M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- S. Song, S.J. Yang, W. Choi, H. Lee, W. Sung et al., Molecular engineering of organic spacer cations for efficient and stable formamidinium perovskite solar cell. Adv. Energy Mater. 10(42), 2001759 (2020). https://doi.org/10.1002/aenm.202001759
- X. Yang, X.-D. Wang, W.-G. Li, Y.-H. Huang, L.-B. Wang et al., Conjugated diamine cation based halide perovskitoid enables robust stability and high photodetector performance. Sci. Bull. 69(24), 3849–3859 (2024). https://doi.org/10.1016/j.scib.2024.08.041
- Y.-H. Huang, X.-D. Wang, W.-G. Li, S.-Y. Zou, X. Yang et al., Band structure optimized by electron-acceptor cations for sensitive perovskite single crystal self-powered photodetectors. Small 20(15), 2306821 (2024). https://doi.org/10.1002/smll.202306821
- T. Sheikh, G.M. Anilkumar, T. Das, A. Rahman, S. Chakraborty et al., Combining π-conjugation and cation-π interaction for water-stable and photoconductive one-dimensional hybrid lead bromide. J. Phys. Chem. Lett. 14(7), 1870–1876 (2023). https://doi.org/10.1021/acs.jpclett.2c03861
- T. Sheikh, S. Maqbool, P. Mandal, A. Nag, Introducing intermolecular cation-π interactions for water-stable low dimensional hybrid lead halide perovskites. Angew. Chem. Int. Ed. 60(33), 18265–18271 (2021). https://doi.org/10.1002/anie.202105883
- J. Cao, J. Yin, S. Yuan, Y. Zhao, J. Li et al., Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale 7(21), 9443–9447 (2015). https://doi.org/10.1039/C5NR01820J
- T.Y. Wen, S. Yang, P.F. Liu, L.J. Tang, H.W. Qiao et al., Surface electronic modification of perovskite thin film with water-resistant electron delocalized molecules for stable and efficient photovoltaics. Adv. Energy Mater. 8(13), 1703143 (2018). https://doi.org/10.1002/aenm.201703143
- Q. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen et al., Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30(9), 1705393 (2018). https://doi.org/10.1002/adma.201705393
- N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov et al., Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8(10), 9815–9821 (2014). https://doi.org/10.1021/nn5036476
- Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
- G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
- W.L. Tan, C.R. McNeill, X-ray diffraction of photovoltaic perovskites: Principles and applications. Appl. Phys. Rev. 9(2), 021310 (2022). https://doi.org/10.1063/5.0076665
- H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang et al., Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10(5), 333–339 (2016). https://doi.org/10.1038/nphoton.2016.41
- W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11(11), 726–732 (2017). https://doi.org/10.1038/s41566-017-0012-4
- S.O. Kasap, X-ray sensitivity of photoconductors: application to stabilized α-Se. J. Phys D: Appl. Phys. 33(21), 2853–2865 (2000). https://doi.org/10.1088/0022-3727/33/21/326
- R. Devanathan, L.R. Corrales, F. Gao, W.J. Weber, Signal variance in gamma-ray detectors–a review. Nucl. Instrum. Meth. Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 565(2), 637–649 (2006). https://doi.org/10.1016/j.nima.2006.05.085
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- Y. Chai, C. Jiang, X. Hu, J. Han, Y. Wang et al., Homogeneous bridging induces compact and scalable perovskite thick films for X-ray flat-panel detectors. Small 19(52), 2305357 (2023). https://doi.org/10.1002/smll.202305357
- T. Bu, J. Li, H. Li, C. Tian, J. Su et al., Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372(6548), 1327–1332 (2021). https://doi.org/10.1126/science.abh1035
- J.-W. Lee, S. Tan, T.-H. Han, R. Wang, L. Zhang et al., Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020). https://doi.org/10.1038/s41467-020-19237-3
- Y. Meng, Y. Wang, C. Liu, P. Yan, K. Sun et al., Epitaxial growth of α-FAPbI3 at a well-matched heterointerface for efficient perovskite solar cells and solar modules. Adv. Mater. 36(6), 2309208 (2024). https://doi.org/10.1002/adma.202309208
- J. Chen, D.J. Morrow, Y. Fu, W. Zheng, Y. Zhao et al., Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 139(38), 13525–13532 (2017). https://doi.org/10.1021/jacs.7b07506
- H. Li, C. Zhang, Q. Lin, F. Lin, T. Xiao et al., Epitaxial growth of two-dimensional MWW zeolite. J. Am. Chem. Soc. 146(12), 8520–8527 (2024). https://doi.org/10.1021/jacs.4c00162
- C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule 6(1), 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
- Y. Teng, J.-H. Chen, Y.-H. Huang, Z.-C. Zhou, X.-D. Wang et al., Atom-triggered epitaxial growth of Bi-based perovskite heterojunctions for promoting interfacial charge transfer. Appl. Catal. B Environ. 335, 122889 (2023). https://doi.org/10.1016/j.apcatb.2023.122889
- B. Wang, H. Li, Q. Dai, M. Zhang, Z. Zou et al., Robust molecular dipole-enabled defect passivation and control of energy-level alignment for high-efficiency perovskite solar cells. Angew. Chem. Int. Ed. 60(32), 17664–17670 (2021). https://doi.org/10.1002/anie.202105512
- B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019). https://doi.org/10.1039/c8cs00853a
- L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski et al., Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
- S. Zeng, X. Sui, D. Liu, Y. Peng, Q. Li et al., Molecular ordering in low-dimensional hybrid perovskites for improved X-ray detection. Angew. Chem. Int. Ed. 64, e202506973 (2025). https://doi.org/10.1002/anie.202506973
- H. Li, J. Song, W. Pan, D. Xu, W.-A. Zhu et al., Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 32(40), 2003790 (2020). https://doi.org/10.1002/adma.202003790
- F.P. García de Arquer, X. Gong, R.P. Sabatini, M. Liu, G.H. Kim et al., Field-emission from quantum-dot-in-perovskite solids. Nat. Commun. 8, 14757 (2017). https://doi.org/10.1038/ncomms14757
- X. Liu, Y. Liu, F. Gao, Z. Yang, S. Liu, Photoinduced surface voltage mapping study for large perovskite single crystals. Appl. Phys. Lett. 108(18), 181604 (2016). https://doi.org/10.1063/1.4948680
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- D. Gao, B. Li, Z. Li, X. Wu, S. Zhang et al., Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv. Mater. 35(3), 2206387 (2023). https://doi.org/10.1002/adma.202206387
- L. Polak, R.J. Wijngaarden, Two competing interpretations of Kelvin probe force microscopy on semiconductors put to test. Phys. Rev. B 93(19), 195320 (2016). https://doi.org/10.1103/PhysRevB.93.195320
- M. Xia, Z. Song, H. Wu, X. Du, X. He et al., Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32(16), 2110729 (2022). https://doi.org/10.1002/adfm.202110729
- H. Wu, X. Chen, Z. Song, A. Zhang, X. Du et al., Mechanochemical synthesis of high-entropy perovskite toward highly sensitive and stable X-ray flat-panel detectors. Adv. Mater. 35(29), 2301406 (2023). https://doi.org/10.1002/adma.202301406
- Z. Song, X. Du, X. He, H. Wang, Z. Liu et al., Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector. Nat. Commun. 14(1), 6865 (2023). https://doi.org/10.1038/s41467-023-42616-5
- B. Zhao, H. Chen, Z. Zhu, X. Yu, W. Huang et al., Polycrystalline lead-free perovskite direct X-ray detectors with high durability and low limit of detection via low-temperature coating. ACS Appl. Mater. Interfaces 16(5), 6113–6121 (2024). https://doi.org/10.1021/acsami.3c16581
- Y. Liu, C. Gao, D. Li, X. Zhang, J. Zhu et al., Dynamic X-ray imaging with screen-printed perovskite CMOS array. Nat. Commun. 15(1), 1588 (2024). https://doi.org/10.1038/s41467-024-45871-2
- X. Qin, J. Han, Y. Chai, B. Cao, A. Li et al., Intercalation electrode and grain reconstruction induce significant sensitivity enhancement for perovskite X-ray detectors. ACS Appl. Mater. Interfaces 16(41), 55705–55714 (2024). https://doi.org/10.1021/acsami.4c10343
- Z. Fan, B. Zhou, X. Lu, S. Tie, R. Yuan et al., Thermal expansion regulation of metal halide perovskites for robust flat-panel X-ray image detectors. Device 3(3), 100617 (2025). https://doi.org/10.1016/j.device.2024.100617
- A. Zhang, S. Tie, X. Lu, W. Tian, Z. Fan et al., High-performance perovskite flat panel X-ray imagers via blade coating. Small Methods 9(4), e2401342 (2025). https://doi.org/10.1002/smtd.202401342
- W.-G. Li, X.-D. Wang, Y.-H. Huang, D.-B. Kuang, Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 35(31), 2210878 (2023). https://doi.org/10.1002/adma.202210878
- S. Tie, W. Zhao, W. Huang, D. Xin, M. Zhang et al., Efficient X-ray attenuation lead-free AgBi2I7 halide rudorffite alternative for sensitive and stable X-ray detection. J. Phys. Chem. Lett. 11(19), 7939–7945 (2020). https://doi.org/10.1021/acs.jpclett.0c02343
References
H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10(1), 1066 (2019). https://doi.org/10.1038/s41467-019-08981-w
H.M. Thirimanne, K.I. Jayawardena, A.J. Parnell, R.I. Bandara, A. Karalasingam et al., High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9(1), 2926 (2018). https://doi.org/10.1038/s41467-018-05301-6
W. Zhao, W.G. Ji, A. Debrie, J.A. Rowlands, Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector. Med. Phys. 30(2), 254–263 (2003). https://doi.org/10.1118/1.1538233
T. Takahashi, S. Watanabe, Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001). https://doi.org/10.1109/23.958705
Q. Guan, S. You, Z.-K. Zhu, R. Li, H. Ye et al., Three-dimensional polar perovskites for highly sensitive self-driven X-ray detection. Angew. Chem. Int. Ed. 63(11), e202320180 (2024). https://doi.org/10.1002/anie.202320180
M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16(1), 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
Y. Li, Y. Lei, H. Wang, Z. Jin, Two-dimensional metal halides for X-ray detection applications. Nano-Micro Lett. 15(1), 128 (2023). https://doi.org/10.1007/s40820-023-01118-1
Y. He, I. Hadar, M.G. Kanatzidis, Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16(1), 14–26 (2021). https://doi.org/10.1038/s41566-021-00909-5
X. Yang, Y.-H. Huang, X.-D. Wang, W.-G. Li, D.-B. Kuang, A-site diamine cation anchoring enables efficient charge transfer and suppressed ion migration in Bi-based hybrid perovskite single crystals. Angew. Chem. Int. Ed. 134(29), e202204663 (2022). https://doi.org/10.1002/ange.202204663
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Solar cells. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
M. Lv, N. Li, G. Jin, X. Du, X. Tao et al., Phase-stable FAPbI3-based single crystals with 600-μm electron diffusion length. Matter 6(12), 4388–4400 (2023). https://doi.org/10.1016/j.matt.2023.10.021
S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9(7), 444–449 (2015). https://doi.org/10.1038/nphoton.2015.82
Y.C. Kim, K.H. Kim, D.Y. Son, D.N. Jeong, J.Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
S. Tie, W. Zhao, D. Xin, M. Zhang, J. Long et al., Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater. 32(31), e2001981 (2020). https://doi.org/10.1002/adma.202001981
E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9(11), 3406–3410 (2016). https://doi.org/10.1039/C6EE02016J
Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren et al., 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Optical Mater. 4(11), 1829–1837 (2016). https://doi.org/10.1002/adom.201600327
D. Chu, B. Jia, N. Liu, Y. Zhang, X. Li et al., Lattice engineering for stabilized black FAPbI3 perovskite single crystals for high-resolution X-ray imaging at the lowest dose. Sci. Adv. 9(35), eadh2255 (2023). https://doi.org/10.1126/sciadv.adh2255
A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014). https://doi.org/10.1021/nl5012992
S. Masi, A.F. Gualdrón-Reyes, I. Mora-Seró, Stabilization of black perovskite phase in FAPbI3 and CsPbI3. ACS Energy Lett. 5(6), 1974–1985 (2020). https://doi.org/10.1021/acsenergylett.0c00801
Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos et al., Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33(8), e2006010 (2021). https://doi.org/10.1002/adma.202006010
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), eabb8985 (2020). https://doi.org/10.1126/science.abb8985
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
Y.H. Park, I. Jeong, S. Bae, H.J. Son, P. Lee et al., Inorganic rubidium cation as an enhancer for photovoltaic performance and moisture stability of HC(NH2)2PbI3 perovskite solar cells. Adv. Funct. Mater. 27(16), 1605988 (2017). https://doi.org/10.1002/adfm.201605988
H.-S. Kim, N.-G. Park, Soft lattice and phase stability of α-FAPbI3. Adv. Energy Mater. 15(2), 2400089 (2025). https://doi.org/10.1002/aenm.202400089
W. Jiang, H. Li, D. Liu, J. Ren, Y. Zhao et al., Synergetic electrostatic and steric effects in α-FAPbI3 single crystals for X-ray detection and imaging. Small 20(38), 2402277 (2024). https://doi.org/10.1002/smll.202402277
S. You, P. Yu, J. Wu, Z.-K. Zhu, Q. Guan et al., Weak X-ray to visible lights detection enabled by a 2D multilayered lead iodide perovskite with iodine-substituted spacer. Adv. Sci. 10(21), 2301149 (2023). https://doi.org/10.1002/advs.202301149
W. Feng, X. Liu, G. Liu, G. Yang, Y. Fang et al., Blade-coating (100)-oriented α-FAPbI3 perovskite films via crystal surface energy regulation for efficient and stable inverted perovskite photovoltaics. Angew. Chem. Int. Ed. 63(39), e202403196 (2024). https://doi.org/10.1002/anie.202403196
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
S. Song, S.J. Yang, W. Choi, H. Lee, W. Sung et al., Molecular engineering of organic spacer cations for efficient and stable formamidinium perovskite solar cell. Adv. Energy Mater. 10(42), 2001759 (2020). https://doi.org/10.1002/aenm.202001759
X. Yang, X.-D. Wang, W.-G. Li, Y.-H. Huang, L.-B. Wang et al., Conjugated diamine cation based halide perovskitoid enables robust stability and high photodetector performance. Sci. Bull. 69(24), 3849–3859 (2024). https://doi.org/10.1016/j.scib.2024.08.041
Y.-H. Huang, X.-D. Wang, W.-G. Li, S.-Y. Zou, X. Yang et al., Band structure optimized by electron-acceptor cations for sensitive perovskite single crystal self-powered photodetectors. Small 20(15), 2306821 (2024). https://doi.org/10.1002/smll.202306821
T. Sheikh, G.M. Anilkumar, T. Das, A. Rahman, S. Chakraborty et al., Combining π-conjugation and cation-π interaction for water-stable and photoconductive one-dimensional hybrid lead bromide. J. Phys. Chem. Lett. 14(7), 1870–1876 (2023). https://doi.org/10.1021/acs.jpclett.2c03861
T. Sheikh, S. Maqbool, P. Mandal, A. Nag, Introducing intermolecular cation-π interactions for water-stable low dimensional hybrid lead halide perovskites. Angew. Chem. Int. Ed. 60(33), 18265–18271 (2021). https://doi.org/10.1002/anie.202105883
J. Cao, J. Yin, S. Yuan, Y. Zhao, J. Li et al., Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale 7(21), 9443–9447 (2015). https://doi.org/10.1039/C5NR01820J
T.Y. Wen, S. Yang, P.F. Liu, L.J. Tang, H.W. Qiao et al., Surface electronic modification of perovskite thin film with water-resistant electron delocalized molecules for stable and efficient photovoltaics. Adv. Energy Mater. 8(13), 1703143 (2018). https://doi.org/10.1002/aenm.201703143
Q. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen et al., Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30(9), 1705393 (2018). https://doi.org/10.1002/adma.201705393
N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov et al., Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8(10), 9815–9821 (2014). https://doi.org/10.1021/nn5036476
Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
W.L. Tan, C.R. McNeill, X-ray diffraction of photovoltaic perovskites: Principles and applications. Appl. Phys. Rev. 9(2), 021310 (2022). https://doi.org/10.1063/5.0076665
H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang et al., Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10(5), 333–339 (2016). https://doi.org/10.1038/nphoton.2016.41
W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge et al., Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11(11), 726–732 (2017). https://doi.org/10.1038/s41566-017-0012-4
S.O. Kasap, X-ray sensitivity of photoconductors: application to stabilized α-Se. J. Phys D: Appl. Phys. 33(21), 2853–2865 (2000). https://doi.org/10.1088/0022-3727/33/21/326
R. Devanathan, L.R. Corrales, F. Gao, W.J. Weber, Signal variance in gamma-ray detectors–a review. Nucl. Instrum. Meth. Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 565(2), 637–649 (2006). https://doi.org/10.1016/j.nima.2006.05.085
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
Y. Chai, C. Jiang, X. Hu, J. Han, Y. Wang et al., Homogeneous bridging induces compact and scalable perovskite thick films for X-ray flat-panel detectors. Small 19(52), 2305357 (2023). https://doi.org/10.1002/smll.202305357
T. Bu, J. Li, H. Li, C. Tian, J. Su et al., Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372(6548), 1327–1332 (2021). https://doi.org/10.1126/science.abh1035
J.-W. Lee, S. Tan, T.-H. Han, R. Wang, L. Zhang et al., Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020). https://doi.org/10.1038/s41467-020-19237-3
Y. Meng, Y. Wang, C. Liu, P. Yan, K. Sun et al., Epitaxial growth of α-FAPbI3 at a well-matched heterointerface for efficient perovskite solar cells and solar modules. Adv. Mater. 36(6), 2309208 (2024). https://doi.org/10.1002/adma.202309208
J. Chen, D.J. Morrow, Y. Fu, W. Zheng, Y. Zhao et al., Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 139(38), 13525–13532 (2017). https://doi.org/10.1021/jacs.7b07506
H. Li, C. Zhang, Q. Lin, F. Lin, T. Xiao et al., Epitaxial growth of two-dimensional MWW zeolite. J. Am. Chem. Soc. 146(12), 8520–8527 (2024). https://doi.org/10.1021/jacs.4c00162
C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule 6(1), 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
Y. Teng, J.-H. Chen, Y.-H. Huang, Z.-C. Zhou, X.-D. Wang et al., Atom-triggered epitaxial growth of Bi-based perovskite heterojunctions for promoting interfacial charge transfer. Appl. Catal. B Environ. 335, 122889 (2023). https://doi.org/10.1016/j.apcatb.2023.122889
B. Wang, H. Li, Q. Dai, M. Zhang, Z. Zou et al., Robust molecular dipole-enabled defect passivation and control of energy-level alignment for high-efficiency perovskite solar cells. Angew. Chem. Int. Ed. 60(32), 17664–17670 (2021). https://doi.org/10.1002/anie.202105512
B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019). https://doi.org/10.1039/c8cs00853a
L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski et al., Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
S. Zeng, X. Sui, D. Liu, Y. Peng, Q. Li et al., Molecular ordering in low-dimensional hybrid perovskites for improved X-ray detection. Angew. Chem. Int. Ed. 64, e202506973 (2025). https://doi.org/10.1002/anie.202506973
H. Li, J. Song, W. Pan, D. Xu, W.-A. Zhu et al., Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 32(40), 2003790 (2020). https://doi.org/10.1002/adma.202003790
F.P. García de Arquer, X. Gong, R.P. Sabatini, M. Liu, G.H. Kim et al., Field-emission from quantum-dot-in-perovskite solids. Nat. Commun. 8, 14757 (2017). https://doi.org/10.1038/ncomms14757
X. Liu, Y. Liu, F. Gao, Z. Yang, S. Liu, Photoinduced surface voltage mapping study for large perovskite single crystals. Appl. Phys. Lett. 108(18), 181604 (2016). https://doi.org/10.1063/1.4948680
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611(7935), 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
D. Gao, B. Li, Z. Li, X. Wu, S. Zhang et al., Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv. Mater. 35(3), 2206387 (2023). https://doi.org/10.1002/adma.202206387
L. Polak, R.J. Wijngaarden, Two competing interpretations of Kelvin probe force microscopy on semiconductors put to test. Phys. Rev. B 93(19), 195320 (2016). https://doi.org/10.1103/PhysRevB.93.195320
M. Xia, Z. Song, H. Wu, X. Du, X. He et al., Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager. Adv. Funct. Mater. 32(16), 2110729 (2022). https://doi.org/10.1002/adfm.202110729
H. Wu, X. Chen, Z. Song, A. Zhang, X. Du et al., Mechanochemical synthesis of high-entropy perovskite toward highly sensitive and stable X-ray flat-panel detectors. Adv. Mater. 35(29), 2301406 (2023). https://doi.org/10.1002/adma.202301406
Z. Song, X. Du, X. He, H. Wang, Z. Liu et al., Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector. Nat. Commun. 14(1), 6865 (2023). https://doi.org/10.1038/s41467-023-42616-5
B. Zhao, H. Chen, Z. Zhu, X. Yu, W. Huang et al., Polycrystalline lead-free perovskite direct X-ray detectors with high durability and low limit of detection via low-temperature coating. ACS Appl. Mater. Interfaces 16(5), 6113–6121 (2024). https://doi.org/10.1021/acsami.3c16581
Y. Liu, C. Gao, D. Li, X. Zhang, J. Zhu et al., Dynamic X-ray imaging with screen-printed perovskite CMOS array. Nat. Commun. 15(1), 1588 (2024). https://doi.org/10.1038/s41467-024-45871-2
X. Qin, J. Han, Y. Chai, B. Cao, A. Li et al., Intercalation electrode and grain reconstruction induce significant sensitivity enhancement for perovskite X-ray detectors. ACS Appl. Mater. Interfaces 16(41), 55705–55714 (2024). https://doi.org/10.1021/acsami.4c10343
Z. Fan, B. Zhou, X. Lu, S. Tie, R. Yuan et al., Thermal expansion regulation of metal halide perovskites for robust flat-panel X-ray image detectors. Device 3(3), 100617 (2025). https://doi.org/10.1016/j.device.2024.100617
A. Zhang, S. Tie, X. Lu, W. Tian, Z. Fan et al., High-performance perovskite flat panel X-ray imagers via blade coating. Small Methods 9(4), e2401342 (2025). https://doi.org/10.1002/smtd.202401342
W.-G. Li, X.-D. Wang, Y.-H. Huang, D.-B. Kuang, Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 35(31), 2210878 (2023). https://doi.org/10.1002/adma.202210878
S. Tie, W. Zhao, W. Huang, D. Xin, M. Zhang et al., Efficient X-ray attenuation lead-free AgBi2I7 halide rudorffite alternative for sensitive and stable X-ray detection. J. Phys. Chem. Lett. 11(19), 7939–7945 (2020). https://doi.org/10.1021/acs.jpclett.0c02343