High-Entropy Amorphous Catalysts for Water Electrolysis: A New Frontier
Corresponding Author: Bing‑Jie Ni
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 77
Abstract
High‐entropy amorphous catalysts (HEACs) integrate multielement synergy with structural disorder, making them promising candidates for water splitting. Their distinctive features—including flexible coordination environments, tunable electronic structures, abundant unsaturated active sites, and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions. This review summarizes recent advances in HEACs for hydrogen evolution, oxygen evolution, and overall water splitting, highlighting their disorder-driven advantages over crystalline counterparts. Catalytic performance benchmarks are presented, and mechanistic insights are discussed, focusing on how multimetallic synergy, amorphization effect, and in‐situ reconstruction cooperatively regulate reaction pathways. These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
Highlights:
1 This review comprehensively summarizes the recent progress of high-entropy amorphous catalysts for electrochemical water splitting.
2 The unique structural characteristics of high-entropy amorphous materials—such as short-range order, high defect density, and flexible coordination—are discussed in relation to their electrocatalytic advantages.
3 Mechanistic insights into multimetallic synergy, amorphization effect, and in-situ reconstruction are highlighted to guide rational catalyst design.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Chen, Y. Tuo, Q. Lu, H. Lu, S. Zhang et al., Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 287, 119953 (2021). https://doi.org/10.1016/j.apcatb.2021.119953
- C. Li, B. Zhang, Y. Li, S. Hao, X. Cao et al., Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 244, 56–62 (2019). https://doi.org/10.1016/j.apcatb.2018.11.046
- Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78, 105270 (2020). https://doi.org/10.1016/j.nanoen.2020.105270
- J. Liu, R. Burciaga, S. Tang, S. Ding, H. Ran et al., Heterogeneous catalysis for the environment. Innov. Mater. 2(3), 100090 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100090
- B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283), 333–337 (2016). https://doi.org/10.1126/science.aaf1525
- C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013). https://doi.org/10.1021/ja407115p
- Y. Sun, B. Huang, Y. Li, Y. Xing, M. Luo et al., Trifunctional fishbone-like PtCo/Ir enables high-performance zinc–air batteries to drive the water-splitting catalysis. Chem. Mater. 31(19), 8136–8144 (2019). https://doi.org/10.1021/acs.chemmater.9b02892
- J. Yang, Y. Ji, Q. Shao, N. Zhang, Y. Li et al., A universal strategy to metal wavy nanowires for efficient electrochemical water splitting at pH-universal conditions. Adv. Funct. Mater. 28(41), 1803722 (2018). https://doi.org/10.1002/adfm.201803722
- J.-T. Ren, L. Chen, H.-Y. Wang, Z.-Y. Yuan, High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52(23), 8319–8373 (2023). https://doi.org/10.1039/D3CS00557G
- N.K. Katiyar, K. Biswas, J.-W. Yeh, S. Sharma, C.S. Tiwary, A perspective on the catalysis using the high entropy alloys. Nano Energy 88, 106261 (2021). https://doi.org/10.1016/j.nanoen.2021.106261
- B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
- J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
- E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4
- Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen et al., Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574(7777), 223–227 (2019). https://doi.org/10.1038/s41586-019-1617-1
- G.M. Tomboc, T. Kwon, J. Joo, K. Lee, High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J. Mater. Chem. A 8(30), 14844–14862 (2020). https://doi.org/10.1039/D0TA05176D
- H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang et al., Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11(1), 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9
- T.A.A. Batchelor, J.K. Pedersen, S.H. Winther, I.E. Castelli, K.W. Jacobsen et al., High-entropy alloys as a discovery platform for electrocatalysis. Joule 3(3), 834–845 (2019). https://doi.org/10.1016/j.joule.2018.12.015
- W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8(6), 471–485 (2024). https://doi.org/10.1038/s41570-024-00602-5
- H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie et al., Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7(11), 6499–6506 (2019). https://doi.org/10.1039/c9ta00505f
- L. Han, S. Zhu, Z. Rao, C. Scheu, D. Ponge, A. Ludwig, H. Zhang, O. Gutfleisch, H. Hahn, Z. Li, D. Raabe, Multifunctional high-entropy materials. Nat. Rev. Mater. 9(12), 846–865 (2024). https://doi.org/10.1038/s41578-024-00720-y
- J. Chen, L. Ren, X. Chen, Q. Wang, C. Chen et al., Well-defined nanostructures of high entropy alloys for electrocatalysis. Exploration 5(2), 20230036 (2025). https://doi.org/10.1002/EXP.20230036
- W.-T. Zhang, X.-Q. Wang, F.-Q. Zhang, X.-Y. Cui, B.-B. Fan et al., Frontiers in high entropy alloys and high entropy functional materials. Rare Met. 43(10), 4639–4776 (2024). https://doi.org/10.1007/s12598-024-02852-0
- S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
- Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros et al., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14(5), 2883–2905 (2021). https://doi.org/10.1039/d1ee00505g
- Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao et al., High-entropy nanops: synthesis-structure-property relationships and data-driven discovery. Science 376(6589), eabn3103 (2022). https://doi.org/10.1126/science.abn3103
- Y. Sun, S. Dai, Synthesis of high-entropy materials. Nat. Synth. 3(12), 1457–1470 (2024). https://doi.org/10.1038/s44160-024-00690-7
- R. Huang, H. Zhao, Z. Chen, High-entropy materials for photocatalysis. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.09.002
- P.-F. Li, Z.-J. Cao, Y.-J. He, K. Jia, C.-H. Xiao et al., Entropy-driven design strategies: high-entropy materials unlocking the potential of lithium-sulfur chemistry. Tungsten (2025). https://doi.org/10.1007/s42864-025-00345-w
- C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
- M.W. Glasscott, A.D. Pendergast, S. Goines, A.R. Bishop, A.T. Hoang et al., Electrosynthesis of high-entropy metallic glass nanops for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019). https://doi.org/10.1038/s41467-019-10303-z
- W. Dai, T. Lu, Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power. Sources 430, 104–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.030
- G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018). https://doi.org/10.1016/j.electacta.2018.05.035
- A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya et al., High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31(26), e1806236 (2019). https://doi.org/10.1002/adma.201806236
- Y. Zhai, X. Ren, B. Wang, S. Liu, High-entropy catalyst: a novel platform for electrochemical water splitting. Adv. Funct. Mater. 32(47), 2207536 (2022). https://doi.org/10.1002/adfm.202207536
- Z.-J. Zhang, N. Yu, Y.-L. Dong, G. Han, H. Hu et al., High entropy catalysts in electrolytic water splitting: a review from properties to applications. Chem. Eng. J. 498, 155736 (2024). https://doi.org/10.1016/j.cej.2024.155736
- T. Wu, X. Zhang, Z. Yang, Z. Chen, Y. Long et al., High-entropy alloys and oxides as catalysts for water-splitting: synthesis, characterization, applications and prospects. Inorg. Chem. Front. (2025). https://doi.org/10.1039/D5QI00538H
- Z. Chen, X. Duan, W. Wei, S. Wang, Z. Zhang et al., Boride-based electrocatalysts: emerging candidates for water splitting. Nano Res. 13(2), 293–314 (2020). https://doi.org/10.1007/s12274-020-2618-y
- R. Mohili, N.R. Hemanth, H. Jin, K. Lee, N. Chaudhari, Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. J. Mater. Chem. A 11(20), 10463–10472 (2023). https://doi.org/10.1039/d2ta10081a
- M.W. Glasscott, A.D. Pendergast, S. Goines, A.R. Bishop, A.T. Hoang et al., Electrosynthesis of high-entropy metallic glass nanops for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019). https://doi.org/10.1038/s41467-019-10303-z
- Q. Wang, J. Li, Y. Li, G. Shao, Z. Jia et al., Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 15(10), 8751–8759 (2022). https://doi.org/10.1007/s12274-022-4179-8
- S. Anantharaj, S. Noda, Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 16(2), 1905779 (2020). https://doi.org/10.1002/smll.201905779
- W. Cai, R. Chen, H. Yang, H.B. Tao, H.-Y. Wang et al., Amorphous versus crystalline in water oxidation catalysis: a case study of NiFe alloy. Nano Lett. 20(6), 4278–4285 (2020). https://doi.org/10.1021/acs.nanolett.0c00840
- Y. Yang, X.-C. Duan, S.-H. Guo, X.-M. Zhang, Crystalline-amorphous M@MNx (M = Co, Fe, Ni) encapsulated in nitrogen-doped carbon for enhanced efficient and durable hydrogen evolution reaction. Rare Met. 43(4), 1547–1556 (2024). https://doi.org/10.1007/s12598-023-02533-4
- S.-X. Zhang, J.-Z. Huang, D.-J. Ding, J. Tang, X.-L. Deng, Recent progress in NiMo-based amorphous alloys for electrocatalytic hydrogen evolution reaction. Trans. Nonferrous Met. Soc. China 34(1), 26–49 (2024). https://doi.org/10.1016/S1003-6326(23)66380-0
- Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
- L. Li, X. Zhang, M. Humayun, X. Xu, Z. Shang et al., Manipulation of electron spins with oxygen vacancy on amorphous/crystalline composite-type catalyst. ACS Nano 18(1), 1214–1225 (2024). https://doi.org/10.1021/acsnano.3c12133
- Y. Zhu, C. Liu, S. Cui, Z. Lu, J. Ye et al., Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH)2 catalyst for UOR. Adv. Mater. 35(24), 2301549 (2023). https://doi.org/10.1002/adma.202301549
- J. Liu, Y. Liu, X. Mu, H. Jang, Z. Lei et al., Boosting activity and stability of electrodeposited amorphous Ce-doped NiFe-based catalyst for electrochemical water oxidation. Adv. Funct. Mater. 32(35), 2204086 (2022). https://doi.org/10.1002/adfm.202204086
- B. Jia, G. Liu, B. Zhang, J. Zheng, K. Yin et al., General modification strategy on amorphous materials to boost catalytic performance. Adv. Funct. Mater. 34(44), 2405867 (2024). https://doi.org/10.1002/adfm.202405867
- J. Kang, X. Yang, Q. Hu, Z. Cai, L.-M. Liu et al., Recent progress of amorphous nanomaterials. Chem. Rev. 123(13), 8859–8941 (2023). https://doi.org/10.1021/acs.chemrev.3c00229
- G. Chen, Y. Zhu, H.M. Chen, Z. Hu, S.-F. Hung et al., An amorphous nickel–iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv. Mater. 31(28), 1900883 (2019). https://doi.org/10.1002/adma.201900883
- D. Wu, D. Chen, J. Zhu, S. Mu, Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17(39), 2102777 (2021). https://doi.org/10.1002/smll.202102777
- J. Chen, L. Chen, W. Zhu, X. Huang, W. Wang et al., Bifunctional amorphous high entropy materials for sensitive nitrite detection and efficient oxygen evolution reaction electrocatalysis. Chem. Eng. J. 496, 153997 (2024). https://doi.org/10.1016/j.cej.2024.153997
- X. Li, Z. Zhang, M. Shen, Z. Wang, R. Zheng et al., Highly efficient oxygen evolution reaction enabled by phosphorus-boron facilitating surface reconstruction of amorphous high-entropy materials. J. Colloid Interface Sci. 628, 242–251 (2022). https://doi.org/10.1016/j.jcis.2022.08.068
- Q. Zhang, S. Qiu, L. Wang, K. Lian, J. Luo et al., Multifunctional high-entropy alloys and oxides for self-powered electrocatalytic nitrate reduction to ammonia. Chem. A Eur. J. 31(24), e202500887 (2025). https://doi.org/10.1002/chem.202500887
- Q. Zhang, K. Lian, Q. Liu, G. Qi, S. Zhang et al., High entropy alloy nanops as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 646, 844–854 (2023). https://doi.org/10.1016/j.jcis.2023.05.074
- Y.-F. Cui, S.-D. Jiang, Q. Fu, R. Wang, P. Xu et al., Cost-effective high entropy core–shell fiber for stable oxygen evolution reaction at 2 A cm−2. Adv. Funct. Mater. 33(50), 2306889 (2023). https://doi.org/10.1002/adfm.202306889
- Y. Zhai, X. Ren, J. Yan, S. Liu, High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2(4), 2000096 (2021). https://doi.org/10.1002/sstr.202000096
- Y. Zhang, F. Gao, D. Wang, Z. Li, X. Wang et al., Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coord. Chem. Rev. 475, 214916 (2023). https://doi.org/10.1016/j.ccr.2022.214916
- C. Feng, Y. Zhou, Z. Xie, Z. Yang, L. Zou et al., Vanadium boosted high-entropy amorphous FeCoNiMoV oxide for ampere-level seawater oxidation. Chem. Eng. J. 495, 153408 (2024). https://doi.org/10.1016/j.cej.2024.153408
- J. Liu, L. Guo, In situ self-reconstruction inducing amorphous species: a key to electrocatalysis. Matter 4(9), 2850–2873 (2021). https://doi.org/10.1016/j.matt.2021.05.025
- X. Zhou, H. Zhu, S. Fu, S. Lan, H. Hahn et al., Atomic structure amorphization and electronic structure reconstruction of FeCoNiCrMox high-entropy alloy nanops for highly efficient water oxidation. Small 20(47), 2405596 (2024). https://doi.org/10.1002/smll.202405596
- C. Pei, S. Chen, T. Zhao, M. Li, Z. Cui et al., Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance. Adv. Mater. 34(26), 2200850 (2022). https://doi.org/10.1002/adma.202200850
- J.P. Masnica, S. Sibt-e-Hassan, S. Potgieter-Vermaak, Y.N. Regmi, L.A. King et al., ZIF-8-derived Fe-C catalysts: relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 1(2), 160–169 (2023). https://doi.org/10.1016/j.greenca.2023.11.001
- Z. Wang, Y. Song, J. Wang, Y. Lin, J. Meng et al., Vanadium oxides with amorphous-crystalline heterointerface network for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(13), e202216290 (2023). https://doi.org/10.1002/anie.202216290
- B. Deng, Z. Wang, C.H. Choi, G. Li, Z. Yuan et al., Kinetically controlled synthesis of metallic glass nanops with expanded composition space. Adv. Mater. 36(15), 2309956 (2024). https://doi.org/10.1002/adma.202309956
- G. Wang, Z. Chen, J. Xie, L. Ding, J. Zhu et al., Recent trends and prospects in electrochemical nitrate reduction to ammonia with an emphasis on cobalt catalysts. Coord. Chem. Rev. 539, 216751 (2025). https://doi.org/10.1016/j.ccr.2025.216751
- F. Bo, K. Wang, J. Liang, T. Zhao, J. Wang et al., Recent advances in the application of in situ X-ray diffraction techniques to characterize phase transitions in Fischer-Tropsch synthesis catalysts. Green Carbon 3(1), 22–35 (2025). https://doi.org/10.1016/j.greenca.2024.09.009
- H. Bian, C. Wang, S. Zhao, G. Han, G. Xie et al., Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis. Int. J. Hydrog. Energy 57, 651–659 (2024). https://doi.org/10.1016/j.ijhydene.2023.12.271
- H.-M. Zhang, S.-F. Zhang, L.-H. Zuo, J.-K. Li, J.-X. Guo et al., Recent advances of high-entropy electrocatalysts for water electrolysis by electrodeposition technology: a short review. Rare Met. 43(6), 2371–2390 (2024). https://doi.org/10.1007/s12598-024-02619-7
- R. Zhang, Z. Xu, Z. Du, Y. Wan, S. Yuan et al., Electrodeposition of self-supported high-entropy spinel oxides for stable oxygen evolution. Inorg. Chem. 62(46), 19052–19059 (2023). https://doi.org/10.1021/acs.inorgchem.3c02930
- S.-Q. Chang, C.-C. Cheng, P.-Y. Cheng, C.-L. Huang, S.-Y. Lu, Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 446, 137452 (2022). https://doi.org/10.1016/j.cej.2022.137452
- Y. Li, Y. Liu, J. Shen, A. Lan, X. Jin et al., High-entropy amorphous FeCoCrNi thin films with excellent electrocatalytic oxygen evolution reaction performance. J. Alloys Compd. 1005, 176089 (2024). https://doi.org/10.1016/j.jallcom.2024.176089
- K. Li, J. He, X. Guan, Y. Tong, Y. Ye et al., Phosphorus-modified amorphous high-entropy CoFeNiCrMn compound as high-performance electrocatalyst for hydrazine-assisted water electrolysis. Small 19(42), 2302130 (2023). https://doi.org/10.1002/smll.202302130
- H.-M. Zhang, L. Zuo, Y. Gao, J. Guo, C. Zhu et al., Amorphous high-entropy phosphoxides for efficient overall alkaline water/seawater splitting. J. Mater. Sci. Technol. 173, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.08.003
- H. Fu, J. Lin, L. Zhang, Y. Zhu, Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process. Appl. Catal. A 306, 58–67 (2006). https://doi.org/10.1016/j.apcata.2006.03.040
- X. Bai, P. Duan, Y. Xu, A. Zhang, P.E. Savage, Hydrothermal catalytic processing of pretreated algal oil: a catalyst screening study. Fuel 120, 141–149 (2014). https://doi.org/10.1016/j.fuel.2013.12.012
- S. Ding, F. Liu, X. Shi, H. He, Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst. Appl. Catal. B Environ. 180, 766–774 (2016). https://doi.org/10.1016/j.apcatb.2015.06.055
- J. Huo, J.-P. Tessonnier, B.H. Shanks, Improving hydrothermal stability of supported metal catalysts for biomass conversions: a review. ACS Catal. 11(9), 5248–5270 (2021). https://doi.org/10.1021/acscatal.1c00197
- X. He, N. Zheng, R. Hu, Z. Hu, J.C. Yu, Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments. Adv. Funct. Mater. 31(7), 2006505 (2021). https://doi.org/10.1002/adfm.202006505
- N.-H. Ting, T.X. Nguyen, C.-H. Lee, Y.-C. Chen, C.-H. Yeh et al., Composition-controlled high entropy metal glycerate as high-performance electrocatalyst for oxygen evolution reaction. Appl. Mater. Today 27, 101398 (2022). https://doi.org/10.1016/j.apmt.2022.101398
- T.X. Nguyen, Y.-H. Su, C.-C. Lin, J. Ruan, J.-M. Ting, A new high entropy glycerate for high performance oxygen evolution reaction. Adv. Sci. 8(6), 2002446 (2021). https://doi.org/10.1002/advs.202002446
- X. Mu, M. Yu, X. Liu, Y. Liao, F. Chen et al., High-entropy ultrathin amorphous metal–organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 9(12), 5763–5770 (2024). https://doi.org/10.1021/acsenergylett.4c02552
- D. Zhang, S. Xu, T. Li, M. Zhang, J. Qi et al., High-entropy oxides prepared by dealloying method for supercapacitors. ACS Appl. Eng. Mater. 1(2), 780–789 (2023). https://doi.org/10.1021/acsaenm.2c00198
- Y. He, J. Qin, F. Hu, L. Mao, B. Shen et al., Chemical dealloying derived nanoporous FeCoNiCuTi high-entropy bifunctional electrocatalysts for highly efficient overall water splitting under alkaline conditions. Chem. Eng. J. 492, 152145 (2024). https://doi.org/10.1016/j.cej.2024.152145
- T. Wada, P.-A. Geslin, D. Wei, H. Kato, Partial liquid metal dealloying to synthesize nickel-containing porous and composite ferrous and high-entropy alloys. Commun. Mater. 4, 43 (2023). https://doi.org/10.1038/s43246-023-00374-3
- S. Zhang, Z. Zhang, C. Chen, X. Li, Y. Gao et al., Relation between quenching wheel speed and microstructure, thermal stability and corrosion resistance of quinary Al-Ni-Y-Co-Si high entropy metallic glass ribbons prepared by melt spinning. J. Non-Cryst. Solids 601, 122049 (2023). https://doi.org/10.1016/j.jnoncrysol.2022.122049
- X. Yu, X. Gong, H. Qiao, X. Liu, C. Ma et al., Amorphous-crystalline heterostructured nanoporous high-entropy alloys for high-efficiency pH-universal water splitting. Small Meth. 8(10), 2400793 (2024). https://doi.org/10.1002/smtd.202400793
- M. Danielis, S. Colussi, C. De Leitenburg, L. Soler, J. Llorca et al., Outstanding methane oxidation performance of palladium-embedded ceria catalysts prepared by a one-step dry ball-milling method. Angew. Chem. Int. Ed. 57(32), 10212–10216 (2018). https://doi.org/10.1002/anie.201805929
- X. Meng, X. Bi, C. Yu, G. Chen, B. Chen et al., Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: an active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines. Green Chem. 20(20), 4638–4644 (2018). https://doi.org/10.1039/C8GC01816B
- S. Immohr, M. Felderhoff, C. Weidenthaler, F. Schüth, An orders-of-magnitude increase in the rate of the solid-catalyzed CO oxidation by in situ ball milling. Angew. Chem. Int. Ed. 52(48), 12688–12691 (2013). https://doi.org/10.1002/anie.201305992
- H. Wang, X. Wang, J. Pan, L. Zhang, M. Zhao et al., Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem. Int. Ed. 60(43), 23154–23158 (2021). https://doi.org/10.1002/anie.202109356
- F. Xu, S. Deng, J. Xu, W. Zhang, M. Wu et al., Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ. Sci. Technol. 46(8), 4576–4582 (2012). https://doi.org/10.1021/es203876e
- C. Karuppiah, B. Thirumalraj, S. Alagar, S. Piraman, Y.J. Li et al., Solid-state ball-milling of Co3O4 nano/microspheres and carbon black endorsed LaMnO3 perovskite catalyst for bifunctional oxygen electrocatalysis. Catalysts 11(1), 76 (2021). https://doi.org/10.3390/catal11010076
- W. Xu, H. Chen, K. Jie, Z. Yang, T. Li et al., Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 58(15), 5018–5022 (2019). https://doi.org/10.1002/anie.201900787
- T.N. Tuan, Y. Yi, J.K. Lee, J. Lee, Fe–B catalyst fabricated by hybrid capacitive adsorption–chemical reduction method and its application for hydrogen production from NaBH4 solution. Catal. Today 216, 240–245 (2013). https://doi.org/10.1016/j.cattod.2013.05.024
- J. Zhao, H. Ma, J. Chen, Improved hydrogen generation from alkaline NaBH 4 solution using carbon-supported Co–B as catalysts. Int. J. Hydrog. Energy 32(18), 4711–4716 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.004
- A.K. Beheshti, M. Rezaei, S.M. Alavi, E. Akbari, M. Varbar, Cobalt nanop synthesis through the mechanochemical and chemical reduction method as a highly active and reusable catalyst for H2 production via sodium borohydride hydrolysis process. Int. J. Hydrog. Energy 51, 661–670 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.168
- S. Jiang, Y. Yu, H. He, Z. Wang, R. Zheng et al., General synthesis of composition-tunable high-entropy amorphous oxides toward high efficiency oxygen evolution reaction. Small 20(28), 2310786 (2024). https://doi.org/10.1002/smll.202310786
- S. Jiang, K. Tian, X. Li, C. Duan, D. Wang et al., Amorphous high-entropy non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. J. Colloid Interface Sci. 606, 635–644 (2022). https://doi.org/10.1016/j.jcis.2021.08.060
- J. Johny, Y. Li, M. Kamp, O. Prymak, S.-X. Liang et al., Laser-generated high entropy metallic glass nanops as bifunctional electrocatalysts. Nano Res. 15(6), 4807–4819 (2022). https://doi.org/10.1007/s12274-021-3804-2
- H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101
- S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2(10), 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
- Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy 78, 105392 (2020). https://doi.org/10.1016/j.nanoen.2020.105392
- Y.-Z. Lu, S.-Z. Wei, S.-S. Yang, L.-P. Fu, J.-Q. Tang et al., Hydrothermal synthesis and bifunctional electrocatalytic properties of N and Co co-doped MoS2 for water splitting. Tungsten 7(3), 511–524 (2025). https://doi.org/10.1007/s42864-025-00325-0
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
- J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13(1), 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
- Y. Hao, X. Cao, C. Lei, Z. Chen, X. Yang et al., Chemical oxygen species on electrocatalytic materials during oxygen evolution reaction. Mater. Today Catal. 2, 100012 (2023). https://doi.org/10.1016/j.mtcata.2023.100012
- W. Mo, J.J. Foo, W.-J. Ong, Allying interfacial engineering of 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts toward hydrogen evolution and overall water splitting. Electron 2(1), e20 (2024). https://doi.org/10.1002/elt2.20
- M. Han, C. Wang, J. Zhong, J. Han, N. Wang et al., Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction. Appl. Catal. B Environ. 301, 120764 (2022). https://doi.org/10.1016/j.apcatb.2021.120764
- W. Rong, Y. Chen, R. Dang, K. Huang, J. Xia et al., Amorphous high-entropy IrRuCrFeCoNiOx as efficient water splitting oxygen evolution reaction electrocatalysts. J. Alloys Compd. 971, 172786 (2024). https://doi.org/10.1016/j.jallcom.2023.172786
- P. Yang, Y. An, C. Feng, Y. Liu, S. Liu et al., Heterogeneous high-entropy catalyst nanops for oxygen evolution reaction: impact of oxygen and fluorine introduction. Int. J. Hydrogen Energy 51, 1218–1228 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.143
- A. Hota, J.K. Das, P.K. Panda, A.A. Mohammed, A. Biswal et al., Low-temperature synthesis of high-entropy amorphous metal oxides (HEOs) for enhanced oxygen evolution performance. Dalton Trans. 53(10), 4544–4550 (2024). https://doi.org/10.1039/D4DT00074A
- Y. Li, J. Tang, H. Zhang, Y. Wang, B. Lin et al., In-situ construction and repair of high catalytic activity interface on corrosion-resistant high-entropy amorphous alloy electrode for hydrogen production in high-temperature dilute sulfuric acid electrolysis. Chem. Eng. J. 453, 139905 (2023). https://doi.org/10.1016/j.cej.2022.139905
- X. Zhong, Y.-A. Zhu, W. Dai, J. Yu, T. Lu et al., Electrochemically reconstructed high-entropy amorphous FeCoNiCrVB as a highly active oxygen evolution catalyst. New J. Chem. 46(18), 8398–8406 (2022). https://doi.org/10.1039/d2nj00984f
- X. Han, Z. Cheng, J. Zhang, J. Liu, C. Zhong et al., Design of amorphous high-entropy FeCoCrMnBS (oxy) hydroxides for boosting oxygen evolution reaction. Acta Phys.-Chim. Sin. 41(4), 100033 (2025). https://doi.org/10.3866/PKU.WHXB202404023
- W. Sun, Y. Wang, S. Liu, F. Lei, J. Xie et al., High-entropy amorphous oxycyanide as an efficient pre-catalyst for the oxygen evolution reaction. Chem. Commun. 58(85), 11981–11984 (2022). https://doi.org/10.1039/D2CC04646F
- J. Yao, Y.-A. Zhu, T. Dai, T. Lu, Y. Pan, Noble metal free high entropy alloys with amorphous based heterostructures for the oxygen evolution reaction. New J. Chem. 48(36), 15904–15912 (2024). https://doi.org/10.1039/d4nj01290a
- C. Lu, M. Li, X. Zhang, H. Hou, X. Li et al., Low-temperature synthesized amorphous quasi-high-entropy carbonate electrocatalyst with superior surface self-optimization for efficient water oxidation. Ceram. Int. 49(8), 12156–12165 (2023). https://doi.org/10.1016/j.ceramint.2022.12.067
- H. Wang, R. Wei, X. Li, X. Ma, X. Hao et al., Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction. J. Mater. Sci. Technol. 68, 191–198 (2021). https://doi.org/10.1016/j.jmst.2020.06.045
- H. Yu, W. Chen, Z. Liu, C. Du, Self-supported amorphous high entropy alloy/crystalline Ni2P heterostructure for water oxidation under alkaline condition. Colloids Surf. A Physicochem. Eng. Aspects 686, 133354 (2024). https://doi.org/10.1016/j.colsurfa.2024.133354
- T.X. Nguyen, Y.-H. Su, C.-C. Lin, J.-M. Ting, Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 31(48), 2106229 (2021). https://doi.org/10.1002/adfm.202106229
- H. Qiao, X. Wang, Q. Dong, H. Zheng, G. Chen et al., A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 86, 106029 (2021). https://doi.org/10.1016/j.nanoen.2021.106029
- J. Tang, J.L. Xu, Z.G. Ye, Y.C. Ma, X.B. Li et al., Synthesis of flower-like cobalt, nickel phosphates grown on the surface of porous high entropy alloy for efficient oxygen evolution. J. Alloys Compd. 885, 160995 (2021). https://doi.org/10.1016/j.jallcom.2021.160995
- X. Huang, Z. Wu, B. Zhang, G. Yang, H.-F. Wang et al., Formation of disordered high-entropy-alloy nanops for highly efficient hydrogen electrocatalysis. Small 20(29), e2311631 (2024). https://doi.org/10.1002/smll.202311631
- Z.L. Carroll, M.J.R. Haché, B. Wang, L. Chen, S. Wu et al., Electrodeposited NiFeCoMoW high-entropy alloys with nanoscale amorphous structure as effective hydrogen evolution electrocatalysts. ACS Appl. Energy Mater. 7(19), 8412–8422 (2024). https://doi.org/10.1021/acsaem.4c01316
- Y. Zhou, L. Gao, H. Chen, H. Wang, J. Zhang et al., Fabrication of amorphous FeCoNiCuMnPx high-entropy phosphide/carbon composites with a heterostructured fusiform morphology for efficient oxygen evolution reaction. J. Mater. Sci. Technol. 168, 62–70 (2024). https://doi.org/10.1016/j.jmst.2023.05.054
- X. Li, H. He, Y. Yu, Z. Wang, R. Zheng et al., Boosting oxygen evolution reaction by synergistically coupling amorphous high-entropy borate FeCoNiMnBOx with MXene. Appl. Surf. Sci. 645, 158838 (2024). https://doi.org/10.1016/j.apsusc.2023.158838
- X. Zhang, R. Xu, T. Wang, L. Niu, Y. Gong et al., Enhancing electrocatalytic performance in the oxygen evolution reaction of zirconium-based amorphous high-entropy oxides via controlled introduction of oxygen vacancies: experimental insights and DFT simulations. J. Colloid Interface Sci. 694, 137635 (2025). https://doi.org/10.1016/j.jcis.2025.137635
- Z.-J. Zhang, N. Yu, Z.-Y. Jin, W.-L. Yu, Y.-S. Zhang et al., Amorphous high entropy oxides based on polyoxometalate clusters to accelerate surface reconstruction for oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 684, 133073 (2024). https://doi.org/10.1016/j.colsurfa.2023.133073
- D. Lai, Q. Kang, F. Gao, Q. Lu, High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J. Mater. Chem. A 9(33), 17913–17922 (2021). https://doi.org/10.1039/D1TA04755H
- C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, In situ formation of nanostructured core–shell Cu3N–CuO to promote alkaline water electrolysis. ACS Energy Lett. 4(3), 747–754 (2019). https://doi.org/10.1021/acsenergylett.9b00091
- P. Babar, J. Mahmood, R.V. Maligal-Ganesh, S.-J. Kim, Z. Xue et al., Electronic structure engineering for electrochemical water oxidation. J. Mater. Chem. A 10(38), 20218–20241 (2022). https://doi.org/10.1039/d2ta04833g
- A. Salian, S. Mandal, Entropy stabilized multicomponent oxides with diverse functionality—a review. Crit. Rev. Solid State Mater. Sci. 47(2), 142–193 (2022). https://doi.org/10.1080/10408436.2021.1886047
- H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121(21), 13174–13212 (2021). https://doi.org/10.1021/acs.chemrev.1c00234
- B. Singh, A. Draksharapu, Recent progress in catalysis using high-entropy metal–organic frameworks and their derived materials. Chemsuschem 18(14), e202500750 (2025). https://doi.org/10.1002/cssc.202500750
- J. Fonseca, T. Gong, L. Jiao, H.-L. Jiang, Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 9(17), 10562–10611 (2021). https://doi.org/10.1039/D1TA01043C
- C. Qin, X. Li, T. Wang, Z. Xu, K.-J. Chen et al., Metal-organic frameworks-based copper catalysts for CO2 electroreduction toward multicarbon products. Exploration 5(3), 270011 (2025). https://doi.org/10.1002/EXP.70011
- Z. Qiu, Y. Li, Y. Gao, Z. Meng, Y. Sun et al., 2D MOF-assisted pyrolysis-displacement-alloying synthesis of high-entropy alloy nanops library for efficient electrocatalytic hydrogen oxidation. Angew. Chem. Int. Ed. 62(33), e202306881 (2023). https://doi.org/10.1002/anie.202306881
- W. Zheng, L.Y.S. Lee, Metal–organic frameworks for electrocatalysis: catalyst or precatalyst? ACS Energy Lett. 6(8), 2838–2843 (2021). https://doi.org/10.1021/acsenergylett.1c01350
- R. Duan, Y.-J. Li, S. Wang, Y.-G. Tong, H.-G. Rubahn, G.-F. Zhang, W.-H. Qi, Effects of phosphate precursors on morphology and oxygen evolution reaction activity of NiFe (oxy)hydroxide on nickel foams. Trans. Nonferrous Met. Soc. China 32(12), 4050–4061 (2022). https://doi.org/10.1016/S1003-6326(22)66077-1
- R. Deng, M. Guo, C. Wang, Q. Zhang, Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: from catalytic mechanism and synthesis method to optimization design. Nano Mater. Sci. 6(2), 139–173 (2024). https://doi.org/10.1016/j.nanoms.2022.04.003
- X. He, M. Liu, F. Liu, X. Liu, H. Liao et al., Oxyanion engineering renewable lattice oxygen mechanism of CoFe oxide for enhanced water oxidation. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505936
- H.-M. Zhang, Review on chemisorbed oxyanions on electrocatalysts for efficient oxygen evolution reaction. Nano Energy 129, 110089 (2024). https://doi.org/10.1016/j.nanoen.2024.110089
- M. Zhang, K. Luo, Y. Fan, X. Lu, J. Ye et al., Metal vacancies and self-reconstruction of high entropy metal borates to boost the oxygen evolution reaction. Chem. Eng. J. 493, 152758 (2024). https://doi.org/10.1016/j.cej.2024.152758
- S. Wang, W. Huo, F. Fang, Z. Xie, J.K. Shang et al., High entropy alloy/C nanops derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chem. Eng. J. 429, 132410 (2022). https://doi.org/10.1016/j.cej.2021.132410
- K. Huang, B. Zhang, J. Wu, T. Zhang, D. Peng et al., Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 8(24), 11938–11947 (2020). https://doi.org/10.1039/D0TA02125C
- T.A. Shifa, A. Vomiero, Confined catalysis: progress and prospects in energy conversion. Adv. Energy Mater. 9(40), 1902307 (2019). https://doi.org/10.1002/aenm.201902307
- M. Bondesgaard, N.L.N. Broge, A. Mamakhel, M. Bremholm, B.B. Iversen, General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 29(50), 1905933 (2019). https://doi.org/10.1002/adfm.201905933
- L. Zhou, D. Guo, L. Wu, Z. Guan, C. Zou et al., A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation. Nat. Commun. 15(1), 2481 (2024). https://doi.org/10.1038/s41467-024-46708-8
- G. Wang, Z. Chen, W. Wei, B.-J. Ni, Electrocatalysis-driven sustainable plastic waste upcycling. Electron 2(2), e34 (2024). https://doi.org/10.1002/elt2.34
- X. Li, Z. Xie, S. Roy, L. Gao, J. Liu et al., Amorphous high-entropy phosphide nanosheets with multi-atom catalytic sites for efficient oxygen evolution. Adv. Mater. 37(10), 2570085 (2025). https://doi.org/10.1002/adma.202570085
- J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a
- S. Wang, W. Huo, H. Feng, Z. Xie, J.K. Shang et al., Enhancing oxygen evolution reaction performance in Prussian blue analogues: triple-play of metal exsolution, hollow interiors, and anionic regulation. Adv. Mater. 35(45), 2304494 (2023). https://doi.org/10.1002/adma.202304494
- Q. Yao, B. Huang, Y. Xu, L. Li, Q. Shao et al., A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy 84, 105909 (2021). https://doi.org/10.1016/j.nanoen.2021.105909
- S. Wang, B. Xu, W. Huo, H. Feng, X. Zhou et al., Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B Environ. 313, 121472 (2022). https://doi.org/10.1016/j.apcatb.2022.121472
- L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44(14), 2080–2084 (2005). https://doi.org/10.1002/anie.200462127
- X. Zhou, H. Zhu, S. Fu, S. Lan, H. Hahn et al., Atomic structure amorphization and electronic structure reconstruction of FeCoNiCrMox high-entropy alloy nanops for highly efficient water oxidation. Small 20(47), 2405596 (2024). https://doi.org/10.1002/smll.202405596
- J. Zhang, P. Hu, H. Wang, Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction. J. Phys. Chem. C 124(19), 10483–10494 (2020). https://doi.org/10.1021/acs.jpcc.0c00406
- Z. Lei, Y. Huang, Y. Zhu, D. Zhou, Y. Chen et al., Automatic discovery and optimal generation of amorphous high-entropy electrocatalysts. J. Am. Chem. Soc. 147(25), 21743–21753 (2025). https://doi.org/10.1021/jacs.5c04117
- Y. Dai, X. Tu, K. Yue, Y. Wan, P. Zhao et al., Anti-dissolving high entropy phosphorus sulfide for efficient and durable seawater electrolysis. Adv. Funct. Mater. 35(12), 2417211 (2025). https://doi.org/10.1002/adfm.202417211
- Z. Jiang, Y. Yuan, L. Tan, M. Li, K. Peng, Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction. Appl. Surf. Sci. 627, 157282 (2023). https://doi.org/10.1016/j.apsusc.2023.157282
- J. Zhang, J. You, L. Liu, T. Liu, Q. An et al., Electrochemical reconstruction induces an efficient oxygen evolution reaction of amorphous senary high-entropy (oxy) hydroxide. J. Alloys Compd. 1037, 182604 (2025). https://doi.org/10.1016/j.jallcom.2025.182604
- D. Zhang, Y. Wang, Y. Peng, Y. Luo, T. Liu et al., Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction. Adv. Powder Mater. 2(4), 100129 (2023). https://doi.org/10.1016/j.apmate.2023.100129
- L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen et al., High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144(16), 7224–7235 (2022). https://doi.org/10.1021/jacs.1c13740
References
C. Chen, Y. Tuo, Q. Lu, H. Lu, S. Zhang et al., Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 287, 119953 (2021). https://doi.org/10.1016/j.apcatb.2021.119953
C. Li, B. Zhang, Y. Li, S. Hao, X. Cao et al., Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 244, 56–62 (2019). https://doi.org/10.1016/j.apcatb.2018.11.046
Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78, 105270 (2020). https://doi.org/10.1016/j.nanoen.2020.105270
J. Liu, R. Burciaga, S. Tang, S. Ding, H. Ran et al., Heterogeneous catalysis for the environment. Innov. Mater. 2(3), 100090 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100090
B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich et al., Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352(6283), 333–337 (2016). https://doi.org/10.1126/science.aaf1525
C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013). https://doi.org/10.1021/ja407115p
Y. Sun, B. Huang, Y. Li, Y. Xing, M. Luo et al., Trifunctional fishbone-like PtCo/Ir enables high-performance zinc–air batteries to drive the water-splitting catalysis. Chem. Mater. 31(19), 8136–8144 (2019). https://doi.org/10.1021/acs.chemmater.9b02892
J. Yang, Y. Ji, Q. Shao, N. Zhang, Y. Li et al., A universal strategy to metal wavy nanowires for efficient electrochemical water splitting at pH-universal conditions. Adv. Funct. Mater. 28(41), 1803722 (2018). https://doi.org/10.1002/adfm.201803722
J.-T. Ren, L. Chen, H.-Y. Wang, Z.-Y. Yuan, High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52(23), 8319–8373 (2023). https://doi.org/10.1039/D3CS00557G
N.K. Katiyar, K. Biswas, J.-W. Yeh, S. Sharma, C.S. Tiwary, A perspective on the catalysis using the high entropy alloys. Nano Energy 88, 106261 (2021). https://doi.org/10.1016/j.nanoen.2021.106261
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567
E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4(8), 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen et al., Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574(7777), 223–227 (2019). https://doi.org/10.1038/s41586-019-1617-1
G.M. Tomboc, T. Kwon, J. Joo, K. Lee, High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J. Mater. Chem. A 8(30), 14844–14862 (2020). https://doi.org/10.1039/D0TA05176D
H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang et al., Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11(1), 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9
T.A.A. Batchelor, J.K. Pedersen, S.H. Winther, I.E. Castelli, K.W. Jacobsen et al., High-entropy alloys as a discovery platform for electrocatalysis. Joule 3(3), 834–845 (2019). https://doi.org/10.1016/j.joule.2018.12.015
W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8(6), 471–485 (2024). https://doi.org/10.1038/s41570-024-00602-5
H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie et al., Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7(11), 6499–6506 (2019). https://doi.org/10.1039/c9ta00505f
L. Han, S. Zhu, Z. Rao, C. Scheu, D. Ponge, A. Ludwig, H. Zhang, O. Gutfleisch, H. Hahn, Z. Li, D. Raabe, Multifunctional high-entropy materials. Nat. Rev. Mater. 9(12), 846–865 (2024). https://doi.org/10.1038/s41578-024-00720-y
J. Chen, L. Ren, X. Chen, Q. Wang, C. Chen et al., Well-defined nanostructures of high entropy alloys for electrocatalysis. Exploration 5(2), 20230036 (2025). https://doi.org/10.1002/EXP.20230036
W.-T. Zhang, X.-Q. Wang, F.-Q. Zhang, X.-Y. Cui, B.-B. Fan et al., Frontiers in high entropy alloys and high entropy functional materials. Rare Met. 43(10), 4639–4776 (2024). https://doi.org/10.1007/s12598-024-02852-0
S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros et al., High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14(5), 2883–2905 (2021). https://doi.org/10.1039/d1ee00505g
Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao et al., High-entropy nanops: synthesis-structure-property relationships and data-driven discovery. Science 376(6589), eabn3103 (2022). https://doi.org/10.1126/science.abn3103
Y. Sun, S. Dai, Synthesis of high-entropy materials. Nat. Synth. 3(12), 1457–1470 (2024). https://doi.org/10.1038/s44160-024-00690-7
R. Huang, H. Zhao, Z. Chen, High-entropy materials for photocatalysis. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.09.002
P.-F. Li, Z.-J. Cao, Y.-J. He, K. Jia, C.-H. Xiao et al., Entropy-driven design strategies: high-entropy materials unlocking the potential of lithium-sulfur chemistry. Tungsten (2025). https://doi.org/10.1007/s42864-025-00345-w
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
M.W. Glasscott, A.D. Pendergast, S. Goines, A.R. Bishop, A.T. Hoang et al., Electrosynthesis of high-entropy metallic glass nanops for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019). https://doi.org/10.1038/s41467-019-10303-z
W. Dai, T. Lu, Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power. Sources 430, 104–111 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.030
G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018). https://doi.org/10.1016/j.electacta.2018.05.035
A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya et al., High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31(26), e1806236 (2019). https://doi.org/10.1002/adma.201806236
Y. Zhai, X. Ren, B. Wang, S. Liu, High-entropy catalyst: a novel platform for electrochemical water splitting. Adv. Funct. Mater. 32(47), 2207536 (2022). https://doi.org/10.1002/adfm.202207536
Z.-J. Zhang, N. Yu, Y.-L. Dong, G. Han, H. Hu et al., High entropy catalysts in electrolytic water splitting: a review from properties to applications. Chem. Eng. J. 498, 155736 (2024). https://doi.org/10.1016/j.cej.2024.155736
T. Wu, X. Zhang, Z. Yang, Z. Chen, Y. Long et al., High-entropy alloys and oxides as catalysts for water-splitting: synthesis, characterization, applications and prospects. Inorg. Chem. Front. (2025). https://doi.org/10.1039/D5QI00538H
Z. Chen, X. Duan, W. Wei, S. Wang, Z. Zhang et al., Boride-based electrocatalysts: emerging candidates for water splitting. Nano Res. 13(2), 293–314 (2020). https://doi.org/10.1007/s12274-020-2618-y
R. Mohili, N.R. Hemanth, H. Jin, K. Lee, N. Chaudhari, Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. J. Mater. Chem. A 11(20), 10463–10472 (2023). https://doi.org/10.1039/d2ta10081a
M.W. Glasscott, A.D. Pendergast, S. Goines, A.R. Bishop, A.T. Hoang et al., Electrosynthesis of high-entropy metallic glass nanops for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019). https://doi.org/10.1038/s41467-019-10303-z
Q. Wang, J. Li, Y. Li, G. Shao, Z. Jia et al., Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res. 15(10), 8751–8759 (2022). https://doi.org/10.1007/s12274-022-4179-8
S. Anantharaj, S. Noda, Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small 16(2), 1905779 (2020). https://doi.org/10.1002/smll.201905779
W. Cai, R. Chen, H. Yang, H.B. Tao, H.-Y. Wang et al., Amorphous versus crystalline in water oxidation catalysis: a case study of NiFe alloy. Nano Lett. 20(6), 4278–4285 (2020). https://doi.org/10.1021/acs.nanolett.0c00840
Y. Yang, X.-C. Duan, S.-H. Guo, X.-M. Zhang, Crystalline-amorphous M@MNx (M = Co, Fe, Ni) encapsulated in nitrogen-doped carbon for enhanced efficient and durable hydrogen evolution reaction. Rare Met. 43(4), 1547–1556 (2024). https://doi.org/10.1007/s12598-023-02533-4
S.-X. Zhang, J.-Z. Huang, D.-J. Ding, J. Tang, X.-L. Deng, Recent progress in NiMo-based amorphous alloys for electrocatalytic hydrogen evolution reaction. Trans. Nonferrous Met. Soc. China 34(1), 26–49 (2024). https://doi.org/10.1016/S1003-6326(23)66380-0
Y. Liu, G. Liu, X. Chen, C. Xue, M. Sun et al., Achieving negatively charged Pt single atoms on amorphous Ni(OH)2 nanosheets with promoted hydrogen absorption in hydrogen evolution. Nano-Micro Lett. 16(1), 202 (2024). https://doi.org/10.1007/s40820-024-01420-6
L. Li, X. Zhang, M. Humayun, X. Xu, Z. Shang et al., Manipulation of electron spins with oxygen vacancy on amorphous/crystalline composite-type catalyst. ACS Nano 18(1), 1214–1225 (2024). https://doi.org/10.1021/acsnano.3c12133
Y. Zhu, C. Liu, S. Cui, Z. Lu, J. Ye et al., Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH)2 catalyst for UOR. Adv. Mater. 35(24), 2301549 (2023). https://doi.org/10.1002/adma.202301549
J. Liu, Y. Liu, X. Mu, H. Jang, Z. Lei et al., Boosting activity and stability of electrodeposited amorphous Ce-doped NiFe-based catalyst for electrochemical water oxidation. Adv. Funct. Mater. 32(35), 2204086 (2022). https://doi.org/10.1002/adfm.202204086
B. Jia, G. Liu, B. Zhang, J. Zheng, K. Yin et al., General modification strategy on amorphous materials to boost catalytic performance. Adv. Funct. Mater. 34(44), 2405867 (2024). https://doi.org/10.1002/adfm.202405867
J. Kang, X. Yang, Q. Hu, Z. Cai, L.-M. Liu et al., Recent progress of amorphous nanomaterials. Chem. Rev. 123(13), 8859–8941 (2023). https://doi.org/10.1021/acs.chemrev.3c00229
G. Chen, Y. Zhu, H.M. Chen, Z. Hu, S.-F. Hung et al., An amorphous nickel–iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv. Mater. 31(28), 1900883 (2019). https://doi.org/10.1002/adma.201900883
D. Wu, D. Chen, J. Zhu, S. Mu, Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17(39), 2102777 (2021). https://doi.org/10.1002/smll.202102777
J. Chen, L. Chen, W. Zhu, X. Huang, W. Wang et al., Bifunctional amorphous high entropy materials for sensitive nitrite detection and efficient oxygen evolution reaction electrocatalysis. Chem. Eng. J. 496, 153997 (2024). https://doi.org/10.1016/j.cej.2024.153997
X. Li, Z. Zhang, M. Shen, Z. Wang, R. Zheng et al., Highly efficient oxygen evolution reaction enabled by phosphorus-boron facilitating surface reconstruction of amorphous high-entropy materials. J. Colloid Interface Sci. 628, 242–251 (2022). https://doi.org/10.1016/j.jcis.2022.08.068
Q. Zhang, S. Qiu, L. Wang, K. Lian, J. Luo et al., Multifunctional high-entropy alloys and oxides for self-powered electrocatalytic nitrate reduction to ammonia. Chem. A Eur. J. 31(24), e202500887 (2025). https://doi.org/10.1002/chem.202500887
Q. Zhang, K. Lian, Q. Liu, G. Qi, S. Zhang et al., High entropy alloy nanops as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 646, 844–854 (2023). https://doi.org/10.1016/j.jcis.2023.05.074
Y.-F. Cui, S.-D. Jiang, Q. Fu, R. Wang, P. Xu et al., Cost-effective high entropy core–shell fiber for stable oxygen evolution reaction at 2 A cm−2. Adv. Funct. Mater. 33(50), 2306889 (2023). https://doi.org/10.1002/adfm.202306889
Y. Zhai, X. Ren, J. Yan, S. Liu, High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2(4), 2000096 (2021). https://doi.org/10.1002/sstr.202000096
Y. Zhang, F. Gao, D. Wang, Z. Li, X. Wang et al., Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coord. Chem. Rev. 475, 214916 (2023). https://doi.org/10.1016/j.ccr.2022.214916
C. Feng, Y. Zhou, Z. Xie, Z. Yang, L. Zou et al., Vanadium boosted high-entropy amorphous FeCoNiMoV oxide for ampere-level seawater oxidation. Chem. Eng. J. 495, 153408 (2024). https://doi.org/10.1016/j.cej.2024.153408
J. Liu, L. Guo, In situ self-reconstruction inducing amorphous species: a key to electrocatalysis. Matter 4(9), 2850–2873 (2021). https://doi.org/10.1016/j.matt.2021.05.025
X. Zhou, H. Zhu, S. Fu, S. Lan, H. Hahn et al., Atomic structure amorphization and electronic structure reconstruction of FeCoNiCrMox high-entropy alloy nanops for highly efficient water oxidation. Small 20(47), 2405596 (2024). https://doi.org/10.1002/smll.202405596
C. Pei, S. Chen, T. Zhao, M. Li, Z. Cui et al., Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance. Adv. Mater. 34(26), 2200850 (2022). https://doi.org/10.1002/adma.202200850
J.P. Masnica, S. Sibt-e-Hassan, S. Potgieter-Vermaak, Y.N. Regmi, L.A. King et al., ZIF-8-derived Fe-C catalysts: relationship between structure and catalytic activity toward the oxygen reduction reaction. Green Carbon 1(2), 160–169 (2023). https://doi.org/10.1016/j.greenca.2023.11.001
Z. Wang, Y. Song, J. Wang, Y. Lin, J. Meng et al., Vanadium oxides with amorphous-crystalline heterointerface network for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(13), e202216290 (2023). https://doi.org/10.1002/anie.202216290
B. Deng, Z. Wang, C.H. Choi, G. Li, Z. Yuan et al., Kinetically controlled synthesis of metallic glass nanops with expanded composition space. Adv. Mater. 36(15), 2309956 (2024). https://doi.org/10.1002/adma.202309956
G. Wang, Z. Chen, J. Xie, L. Ding, J. Zhu et al., Recent trends and prospects in electrochemical nitrate reduction to ammonia with an emphasis on cobalt catalysts. Coord. Chem. Rev. 539, 216751 (2025). https://doi.org/10.1016/j.ccr.2025.216751
F. Bo, K. Wang, J. Liang, T. Zhao, J. Wang et al., Recent advances in the application of in situ X-ray diffraction techniques to characterize phase transitions in Fischer-Tropsch synthesis catalysts. Green Carbon 3(1), 22–35 (2025). https://doi.org/10.1016/j.greenca.2024.09.009
H. Bian, C. Wang, S. Zhao, G. Han, G. Xie et al., Preparation of highly efficient high-entropy alloy catalysts with electrodeposition and corrosion engineering for OER electrocatalysis. Int. J. Hydrog. Energy 57, 651–659 (2024). https://doi.org/10.1016/j.ijhydene.2023.12.271
H.-M. Zhang, S.-F. Zhang, L.-H. Zuo, J.-K. Li, J.-X. Guo et al., Recent advances of high-entropy electrocatalysts for water electrolysis by electrodeposition technology: a short review. Rare Met. 43(6), 2371–2390 (2024). https://doi.org/10.1007/s12598-024-02619-7
R. Zhang, Z. Xu, Z. Du, Y. Wan, S. Yuan et al., Electrodeposition of self-supported high-entropy spinel oxides for stable oxygen evolution. Inorg. Chem. 62(46), 19052–19059 (2023). https://doi.org/10.1021/acs.inorgchem.3c02930
S.-Q. Chang, C.-C. Cheng, P.-Y. Cheng, C.-L. Huang, S.-Y. Lu, Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 446, 137452 (2022). https://doi.org/10.1016/j.cej.2022.137452
Y. Li, Y. Liu, J. Shen, A. Lan, X. Jin et al., High-entropy amorphous FeCoCrNi thin films with excellent electrocatalytic oxygen evolution reaction performance. J. Alloys Compd. 1005, 176089 (2024). https://doi.org/10.1016/j.jallcom.2024.176089
K. Li, J. He, X. Guan, Y. Tong, Y. Ye et al., Phosphorus-modified amorphous high-entropy CoFeNiCrMn compound as high-performance electrocatalyst for hydrazine-assisted water electrolysis. Small 19(42), 2302130 (2023). https://doi.org/10.1002/smll.202302130
H.-M. Zhang, L. Zuo, Y. Gao, J. Guo, C. Zhu et al., Amorphous high-entropy phosphoxides for efficient overall alkaline water/seawater splitting. J. Mater. Sci. Technol. 173, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.08.003
H. Fu, J. Lin, L. Zhang, Y. Zhu, Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process. Appl. Catal. A 306, 58–67 (2006). https://doi.org/10.1016/j.apcata.2006.03.040
X. Bai, P. Duan, Y. Xu, A. Zhang, P.E. Savage, Hydrothermal catalytic processing of pretreated algal oil: a catalyst screening study. Fuel 120, 141–149 (2014). https://doi.org/10.1016/j.fuel.2013.12.012
S. Ding, F. Liu, X. Shi, H. He, Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst. Appl. Catal. B Environ. 180, 766–774 (2016). https://doi.org/10.1016/j.apcatb.2015.06.055
J. Huo, J.-P. Tessonnier, B.H. Shanks, Improving hydrothermal stability of supported metal catalysts for biomass conversions: a review. ACS Catal. 11(9), 5248–5270 (2021). https://doi.org/10.1021/acscatal.1c00197
X. He, N. Zheng, R. Hu, Z. Hu, J.C. Yu, Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments. Adv. Funct. Mater. 31(7), 2006505 (2021). https://doi.org/10.1002/adfm.202006505
N.-H. Ting, T.X. Nguyen, C.-H. Lee, Y.-C. Chen, C.-H. Yeh et al., Composition-controlled high entropy metal glycerate as high-performance electrocatalyst for oxygen evolution reaction. Appl. Mater. Today 27, 101398 (2022). https://doi.org/10.1016/j.apmt.2022.101398
T.X. Nguyen, Y.-H. Su, C.-C. Lin, J. Ruan, J.-M. Ting, A new high entropy glycerate for high performance oxygen evolution reaction. Adv. Sci. 8(6), 2002446 (2021). https://doi.org/10.1002/advs.202002446
X. Mu, M. Yu, X. Liu, Y. Liao, F. Chen et al., High-entropy ultrathin amorphous metal–organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 9(12), 5763–5770 (2024). https://doi.org/10.1021/acsenergylett.4c02552
D. Zhang, S. Xu, T. Li, M. Zhang, J. Qi et al., High-entropy oxides prepared by dealloying method for supercapacitors. ACS Appl. Eng. Mater. 1(2), 780–789 (2023). https://doi.org/10.1021/acsaenm.2c00198
Y. He, J. Qin, F. Hu, L. Mao, B. Shen et al., Chemical dealloying derived nanoporous FeCoNiCuTi high-entropy bifunctional electrocatalysts for highly efficient overall water splitting under alkaline conditions. Chem. Eng. J. 492, 152145 (2024). https://doi.org/10.1016/j.cej.2024.152145
T. Wada, P.-A. Geslin, D. Wei, H. Kato, Partial liquid metal dealloying to synthesize nickel-containing porous and composite ferrous and high-entropy alloys. Commun. Mater. 4, 43 (2023). https://doi.org/10.1038/s43246-023-00374-3
S. Zhang, Z. Zhang, C. Chen, X. Li, Y. Gao et al., Relation between quenching wheel speed and microstructure, thermal stability and corrosion resistance of quinary Al-Ni-Y-Co-Si high entropy metallic glass ribbons prepared by melt spinning. J. Non-Cryst. Solids 601, 122049 (2023). https://doi.org/10.1016/j.jnoncrysol.2022.122049
X. Yu, X. Gong, H. Qiao, X. Liu, C. Ma et al., Amorphous-crystalline heterostructured nanoporous high-entropy alloys for high-efficiency pH-universal water splitting. Small Meth. 8(10), 2400793 (2024). https://doi.org/10.1002/smtd.202400793
M. Danielis, S. Colussi, C. De Leitenburg, L. Soler, J. Llorca et al., Outstanding methane oxidation performance of palladium-embedded ceria catalysts prepared by a one-step dry ball-milling method. Angew. Chem. Int. Ed. 57(32), 10212–10216 (2018). https://doi.org/10.1002/anie.201805929
X. Meng, X. Bi, C. Yu, G. Chen, B. Chen et al., Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: an active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines. Green Chem. 20(20), 4638–4644 (2018). https://doi.org/10.1039/C8GC01816B
S. Immohr, M. Felderhoff, C. Weidenthaler, F. Schüth, An orders-of-magnitude increase in the rate of the solid-catalyzed CO oxidation by in situ ball milling. Angew. Chem. Int. Ed. 52(48), 12688–12691 (2013). https://doi.org/10.1002/anie.201305992
H. Wang, X. Wang, J. Pan, L. Zhang, M. Zhao et al., Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem. Int. Ed. 60(43), 23154–23158 (2021). https://doi.org/10.1002/anie.202109356
F. Xu, S. Deng, J. Xu, W. Zhang, M. Wu et al., Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ. Sci. Technol. 46(8), 4576–4582 (2012). https://doi.org/10.1021/es203876e
C. Karuppiah, B. Thirumalraj, S. Alagar, S. Piraman, Y.J. Li et al., Solid-state ball-milling of Co3O4 nano/microspheres and carbon black endorsed LaMnO3 perovskite catalyst for bifunctional oxygen electrocatalysis. Catalysts 11(1), 76 (2021). https://doi.org/10.3390/catal11010076
W. Xu, H. Chen, K. Jie, Z. Yang, T. Li et al., Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 58(15), 5018–5022 (2019). https://doi.org/10.1002/anie.201900787
T.N. Tuan, Y. Yi, J.K. Lee, J. Lee, Fe–B catalyst fabricated by hybrid capacitive adsorption–chemical reduction method and its application for hydrogen production from NaBH4 solution. Catal. Today 216, 240–245 (2013). https://doi.org/10.1016/j.cattod.2013.05.024
J. Zhao, H. Ma, J. Chen, Improved hydrogen generation from alkaline NaBH 4 solution using carbon-supported Co–B as catalysts. Int. J. Hydrog. Energy 32(18), 4711–4716 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.004
A.K. Beheshti, M. Rezaei, S.M. Alavi, E. Akbari, M. Varbar, Cobalt nanop synthesis through the mechanochemical and chemical reduction method as a highly active and reusable catalyst for H2 production via sodium borohydride hydrolysis process. Int. J. Hydrog. Energy 51, 661–670 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.168
S. Jiang, Y. Yu, H. He, Z. Wang, R. Zheng et al., General synthesis of composition-tunable high-entropy amorphous oxides toward high efficiency oxygen evolution reaction. Small 20(28), 2310786 (2024). https://doi.org/10.1002/smll.202310786
S. Jiang, K. Tian, X. Li, C. Duan, D. Wang et al., Amorphous high-entropy non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. J. Colloid Interface Sci. 606, 635–644 (2022). https://doi.org/10.1016/j.jcis.2021.08.060
J. Johny, Y. Li, M. Kamp, O. Prymak, S.-X. Liang et al., Laser-generated high entropy metallic glass nanops as bifunctional electrocatalysts. Nano Res. 15(6), 4807–4819 (2022). https://doi.org/10.1007/s12274-021-3804-2
H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015). https://doi.org/10.1016/j.rser.2014.10.101
S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2(10), 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy 78, 105392 (2020). https://doi.org/10.1016/j.nanoen.2020.105392
Y.-Z. Lu, S.-Z. Wei, S.-S. Yang, L.-P. Fu, J.-Q. Tang et al., Hydrothermal synthesis and bifunctional electrocatalytic properties of N and Co co-doped MoS2 for water splitting. Tungsten 7(3), 511–524 (2025). https://doi.org/10.1007/s42864-025-00325-0
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15(1), 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13(1), 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
Y. Hao, X. Cao, C. Lei, Z. Chen, X. Yang et al., Chemical oxygen species on electrocatalytic materials during oxygen evolution reaction. Mater. Today Catal. 2, 100012 (2023). https://doi.org/10.1016/j.mtcata.2023.100012
W. Mo, J.J. Foo, W.-J. Ong, Allying interfacial engineering of 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts toward hydrogen evolution and overall water splitting. Electron 2(1), e20 (2024). https://doi.org/10.1002/elt2.20
M. Han, C. Wang, J. Zhong, J. Han, N. Wang et al., Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction. Appl. Catal. B Environ. 301, 120764 (2022). https://doi.org/10.1016/j.apcatb.2021.120764
W. Rong, Y. Chen, R. Dang, K. Huang, J. Xia et al., Amorphous high-entropy IrRuCrFeCoNiOx as efficient water splitting oxygen evolution reaction electrocatalysts. J. Alloys Compd. 971, 172786 (2024). https://doi.org/10.1016/j.jallcom.2023.172786
P. Yang, Y. An, C. Feng, Y. Liu, S. Liu et al., Heterogeneous high-entropy catalyst nanops for oxygen evolution reaction: impact of oxygen and fluorine introduction. Int. J. Hydrogen Energy 51, 1218–1228 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.143
A. Hota, J.K. Das, P.K. Panda, A.A. Mohammed, A. Biswal et al., Low-temperature synthesis of high-entropy amorphous metal oxides (HEOs) for enhanced oxygen evolution performance. Dalton Trans. 53(10), 4544–4550 (2024). https://doi.org/10.1039/D4DT00074A
Y. Li, J. Tang, H. Zhang, Y. Wang, B. Lin et al., In-situ construction and repair of high catalytic activity interface on corrosion-resistant high-entropy amorphous alloy electrode for hydrogen production in high-temperature dilute sulfuric acid electrolysis. Chem. Eng. J. 453, 139905 (2023). https://doi.org/10.1016/j.cej.2022.139905
X. Zhong, Y.-A. Zhu, W. Dai, J. Yu, T. Lu et al., Electrochemically reconstructed high-entropy amorphous FeCoNiCrVB as a highly active oxygen evolution catalyst. New J. Chem. 46(18), 8398–8406 (2022). https://doi.org/10.1039/d2nj00984f
X. Han, Z. Cheng, J. Zhang, J. Liu, C. Zhong et al., Design of amorphous high-entropy FeCoCrMnBS (oxy) hydroxides for boosting oxygen evolution reaction. Acta Phys.-Chim. Sin. 41(4), 100033 (2025). https://doi.org/10.3866/PKU.WHXB202404023
W. Sun, Y. Wang, S. Liu, F. Lei, J. Xie et al., High-entropy amorphous oxycyanide as an efficient pre-catalyst for the oxygen evolution reaction. Chem. Commun. 58(85), 11981–11984 (2022). https://doi.org/10.1039/D2CC04646F
J. Yao, Y.-A. Zhu, T. Dai, T. Lu, Y. Pan, Noble metal free high entropy alloys with amorphous based heterostructures for the oxygen evolution reaction. New J. Chem. 48(36), 15904–15912 (2024). https://doi.org/10.1039/d4nj01290a
C. Lu, M. Li, X. Zhang, H. Hou, X. Li et al., Low-temperature synthesized amorphous quasi-high-entropy carbonate electrocatalyst with superior surface self-optimization for efficient water oxidation. Ceram. Int. 49(8), 12156–12165 (2023). https://doi.org/10.1016/j.ceramint.2022.12.067
H. Wang, R. Wei, X. Li, X. Ma, X. Hao et al., Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction. J. Mater. Sci. Technol. 68, 191–198 (2021). https://doi.org/10.1016/j.jmst.2020.06.045
H. Yu, W. Chen, Z. Liu, C. Du, Self-supported amorphous high entropy alloy/crystalline Ni2P heterostructure for water oxidation under alkaline condition. Colloids Surf. A Physicochem. Eng. Aspects 686, 133354 (2024). https://doi.org/10.1016/j.colsurfa.2024.133354
T.X. Nguyen, Y.-H. Su, C.-C. Lin, J.-M. Ting, Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 31(48), 2106229 (2021). https://doi.org/10.1002/adfm.202106229
H. Qiao, X. Wang, Q. Dong, H. Zheng, G. Chen et al., A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 86, 106029 (2021). https://doi.org/10.1016/j.nanoen.2021.106029
J. Tang, J.L. Xu, Z.G. Ye, Y.C. Ma, X.B. Li et al., Synthesis of flower-like cobalt, nickel phosphates grown on the surface of porous high entropy alloy for efficient oxygen evolution. J. Alloys Compd. 885, 160995 (2021). https://doi.org/10.1016/j.jallcom.2021.160995
X. Huang, Z. Wu, B. Zhang, G. Yang, H.-F. Wang et al., Formation of disordered high-entropy-alloy nanops for highly efficient hydrogen electrocatalysis. Small 20(29), e2311631 (2024). https://doi.org/10.1002/smll.202311631
Z.L. Carroll, M.J.R. Haché, B. Wang, L. Chen, S. Wu et al., Electrodeposited NiFeCoMoW high-entropy alloys with nanoscale amorphous structure as effective hydrogen evolution electrocatalysts. ACS Appl. Energy Mater. 7(19), 8412–8422 (2024). https://doi.org/10.1021/acsaem.4c01316
Y. Zhou, L. Gao, H. Chen, H. Wang, J. Zhang et al., Fabrication of amorphous FeCoNiCuMnPx high-entropy phosphide/carbon composites with a heterostructured fusiform morphology for efficient oxygen evolution reaction. J. Mater. Sci. Technol. 168, 62–70 (2024). https://doi.org/10.1016/j.jmst.2023.05.054
X. Li, H. He, Y. Yu, Z. Wang, R. Zheng et al., Boosting oxygen evolution reaction by synergistically coupling amorphous high-entropy borate FeCoNiMnBOx with MXene. Appl. Surf. Sci. 645, 158838 (2024). https://doi.org/10.1016/j.apsusc.2023.158838
X. Zhang, R. Xu, T. Wang, L. Niu, Y. Gong et al., Enhancing electrocatalytic performance in the oxygen evolution reaction of zirconium-based amorphous high-entropy oxides via controlled introduction of oxygen vacancies: experimental insights and DFT simulations. J. Colloid Interface Sci. 694, 137635 (2025). https://doi.org/10.1016/j.jcis.2025.137635
Z.-J. Zhang, N. Yu, Z.-Y. Jin, W.-L. Yu, Y.-S. Zhang et al., Amorphous high entropy oxides based on polyoxometalate clusters to accelerate surface reconstruction for oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 684, 133073 (2024). https://doi.org/10.1016/j.colsurfa.2023.133073
D. Lai, Q. Kang, F. Gao, Q. Lu, High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J. Mater. Chem. A 9(33), 17913–17922 (2021). https://doi.org/10.1039/D1TA04755H
C. Panda, P.W. Menezes, M. Zheng, S. Orthmann, M. Driess, In situ formation of nanostructured core–shell Cu3N–CuO to promote alkaline water electrolysis. ACS Energy Lett. 4(3), 747–754 (2019). https://doi.org/10.1021/acsenergylett.9b00091
P. Babar, J. Mahmood, R.V. Maligal-Ganesh, S.-J. Kim, Z. Xue et al., Electronic structure engineering for electrochemical water oxidation. J. Mater. Chem. A 10(38), 20218–20241 (2022). https://doi.org/10.1039/d2ta04833g
A. Salian, S. Mandal, Entropy stabilized multicomponent oxides with diverse functionality—a review. Crit. Rev. Solid State Mater. Sci. 47(2), 142–193 (2022). https://doi.org/10.1080/10408436.2021.1886047
H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121(21), 13174–13212 (2021). https://doi.org/10.1021/acs.chemrev.1c00234
B. Singh, A. Draksharapu, Recent progress in catalysis using high-entropy metal–organic frameworks and their derived materials. Chemsuschem 18(14), e202500750 (2025). https://doi.org/10.1002/cssc.202500750
J. Fonseca, T. Gong, L. Jiao, H.-L. Jiang, Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 9(17), 10562–10611 (2021). https://doi.org/10.1039/D1TA01043C
C. Qin, X. Li, T. Wang, Z. Xu, K.-J. Chen et al., Metal-organic frameworks-based copper catalysts for CO2 electroreduction toward multicarbon products. Exploration 5(3), 270011 (2025). https://doi.org/10.1002/EXP.70011
Z. Qiu, Y. Li, Y. Gao, Z. Meng, Y. Sun et al., 2D MOF-assisted pyrolysis-displacement-alloying synthesis of high-entropy alloy nanops library for efficient electrocatalytic hydrogen oxidation. Angew. Chem. Int. Ed. 62(33), e202306881 (2023). https://doi.org/10.1002/anie.202306881
W. Zheng, L.Y.S. Lee, Metal–organic frameworks for electrocatalysis: catalyst or precatalyst? ACS Energy Lett. 6(8), 2838–2843 (2021). https://doi.org/10.1021/acsenergylett.1c01350
R. Duan, Y.-J. Li, S. Wang, Y.-G. Tong, H.-G. Rubahn, G.-F. Zhang, W.-H. Qi, Effects of phosphate precursors on morphology and oxygen evolution reaction activity of NiFe (oxy)hydroxide on nickel foams. Trans. Nonferrous Met. Soc. China 32(12), 4050–4061 (2022). https://doi.org/10.1016/S1003-6326(22)66077-1
R. Deng, M. Guo, C. Wang, Q. Zhang, Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: from catalytic mechanism and synthesis method to optimization design. Nano Mater. Sci. 6(2), 139–173 (2024). https://doi.org/10.1016/j.nanoms.2022.04.003
X. He, M. Liu, F. Liu, X. Liu, H. Liao et al., Oxyanion engineering renewable lattice oxygen mechanism of CoFe oxide for enhanced water oxidation. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505936
H.-M. Zhang, Review on chemisorbed oxyanions on electrocatalysts for efficient oxygen evolution reaction. Nano Energy 129, 110089 (2024). https://doi.org/10.1016/j.nanoen.2024.110089
M. Zhang, K. Luo, Y. Fan, X. Lu, J. Ye et al., Metal vacancies and self-reconstruction of high entropy metal borates to boost the oxygen evolution reaction. Chem. Eng. J. 493, 152758 (2024). https://doi.org/10.1016/j.cej.2024.152758
S. Wang, W. Huo, F. Fang, Z. Xie, J.K. Shang et al., High entropy alloy/C nanops derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chem. Eng. J. 429, 132410 (2022). https://doi.org/10.1016/j.cej.2021.132410
K. Huang, B. Zhang, J. Wu, T. Zhang, D. Peng et al., Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 8(24), 11938–11947 (2020). https://doi.org/10.1039/D0TA02125C
T.A. Shifa, A. Vomiero, Confined catalysis: progress and prospects in energy conversion. Adv. Energy Mater. 9(40), 1902307 (2019). https://doi.org/10.1002/aenm.201902307
M. Bondesgaard, N.L.N. Broge, A. Mamakhel, M. Bremholm, B.B. Iversen, General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 29(50), 1905933 (2019). https://doi.org/10.1002/adfm.201905933
L. Zhou, D. Guo, L. Wu, Z. Guan, C. Zou et al., A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation. Nat. Commun. 15(1), 2481 (2024). https://doi.org/10.1038/s41467-024-46708-8
G. Wang, Z. Chen, W. Wei, B.-J. Ni, Electrocatalysis-driven sustainable plastic waste upcycling. Electron 2(2), e34 (2024). https://doi.org/10.1002/elt2.34
X. Li, Z. Xie, S. Roy, L. Gao, J. Liu et al., Amorphous high-entropy phosphide nanosheets with multi-atom catalytic sites for efficient oxygen evolution. Adv. Mater. 37(10), 2570085 (2025). https://doi.org/10.1002/adma.202570085
J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a
S. Wang, W. Huo, H. Feng, Z. Xie, J.K. Shang et al., Enhancing oxygen evolution reaction performance in Prussian blue analogues: triple-play of metal exsolution, hollow interiors, and anionic regulation. Adv. Mater. 35(45), 2304494 (2023). https://doi.org/10.1002/adma.202304494
Q. Yao, B. Huang, Y. Xu, L. Li, Q. Shao et al., A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy 84, 105909 (2021). https://doi.org/10.1016/j.nanoen.2021.105909
S. Wang, B. Xu, W. Huo, H. Feng, X. Zhou et al., Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B Environ. 313, 121472 (2022). https://doi.org/10.1016/j.apcatb.2022.121472
L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44(14), 2080–2084 (2005). https://doi.org/10.1002/anie.200462127
X. Zhou, H. Zhu, S. Fu, S. Lan, H. Hahn et al., Atomic structure amorphization and electronic structure reconstruction of FeCoNiCrMox high-entropy alloy nanops for highly efficient water oxidation. Small 20(47), 2405596 (2024). https://doi.org/10.1002/smll.202405596
J. Zhang, P. Hu, H. Wang, Amorphous catalysis: machine learning driven high-throughput screening of superior active site for hydrogen evolution reaction. J. Phys. Chem. C 124(19), 10483–10494 (2020). https://doi.org/10.1021/acs.jpcc.0c00406
Z. Lei, Y. Huang, Y. Zhu, D. Zhou, Y. Chen et al., Automatic discovery and optimal generation of amorphous high-entropy electrocatalysts. J. Am. Chem. Soc. 147(25), 21743–21753 (2025). https://doi.org/10.1021/jacs.5c04117
Y. Dai, X. Tu, K. Yue, Y. Wan, P. Zhao et al., Anti-dissolving high entropy phosphorus sulfide for efficient and durable seawater electrolysis. Adv. Funct. Mater. 35(12), 2417211 (2025). https://doi.org/10.1002/adfm.202417211
Z. Jiang, Y. Yuan, L. Tan, M. Li, K. Peng, Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction. Appl. Surf. Sci. 627, 157282 (2023). https://doi.org/10.1016/j.apsusc.2023.157282
J. Zhang, J. You, L. Liu, T. Liu, Q. An et al., Electrochemical reconstruction induces an efficient oxygen evolution reaction of amorphous senary high-entropy (oxy) hydroxide. J. Alloys Compd. 1037, 182604 (2025). https://doi.org/10.1016/j.jallcom.2025.182604
D. Zhang, Y. Wang, Y. Peng, Y. Luo, T. Liu et al., Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction. Adv. Powder Mater. 2(4), 100129 (2023). https://doi.org/10.1016/j.apmate.2023.100129
L. Fan, Y. Ji, G. Wang, J. Chen, K. Chen et al., High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144(16), 7224–7235 (2022). https://doi.org/10.1021/jacs.1c13740