Te-Modulated Fe Single Atom with Synergistic Bidirectional Catalysis for High-Rate and Long–Cycling Lithium-Sulfur Battery
Corresponding Author: Hongbin Zhao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 31
Abstract
Single-atom catalysts (SACs) have garnered significant attention in lithium-sulfur (Li-S) batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics. However, the development of highly efficient SACs and a comprehensive understanding of their structure–activity relationships remain enormously challenging. Herein, a novel kind of Fe-based SAC featuring an asymmetric FeN5-TeN4 coordination structure was precisely designed by introducing Te atom adjacent to the Fe active center to enhance the catalytic activity. Theoretical calculations reveal that the neighboring Te atom modulates the local coordination environment of the central Fe site, elevating the d-band center closer to the Fermi level and strengthening the d-p orbital hybridization between the catalyst and sulfur species, thereby immobilizing polysulfides and improving the bidirectional catalysis of Li-S redox. Consequently, the Fe-Te atom pair catalyst endows Li-S batteries with exceptional rate performance, achieving a high specific capacity of 735 mAh g−1 at 5 C, and remarkable cycling stability with a low decay rate of 0.038% per cycle over 1000 cycles at 1 C. This work provides fundamental insights into the electronic structure modulation of SACs and establishes a clear correlation between precisely engineered atomic configurations and their enhanced catalytic performance in Li-S electrochemistry.
Highlights:
1 The Te modulator induces a polarized charge distribution to optimize the electronic structure of the central Fe site, elevating the d-band center and enhancing the density of states near the Fermi level.
2 Strengthened d-p orbital hybridization between the catalyst and sulfur species optimizes the adsorption behavior toward LiPSs and facilitates the bidirectional redox process of Li-S batteries.
3 The Fe-Te atom pair catalyst endows Li-S batteries remarkable rate performance, extraordinary cycling stability and anticipated areal capacity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- S. Dörfler, S. Walus, J. Locke, A. Fotouhi, D.J. Auger et al., Recent progress and emerging application areas for lithium–sulfur battery technology. Energy Technol. 9(1), 2000694 (2021). https://doi.org/10.1002/ente.202000694
- Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
- M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber et al., Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5(16), 1401986 (2015). https://doi.org/10.1002/aenm.201401986
- M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton et al., Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015). https://doi.org/10.1039/C5EE01388G
- A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
- Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
- A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013). https://doi.org/10.1021/ar300179v
- W. Yao, K. Liao, T. Lai, H. Sul, A. Manthiram, Rechargeable metal-sulfur batteries: key materials to mechanisms. Chem. Rev. 124(8), 4935–5118 (2024). https://doi.org/10.1021/acs.chemrev.3c00919
- C. Zhou, C. Dong, W. Wang, Y. Tian, C. Shen et al., An ultrathin and crack-free metal-organic framework film for effective polysulfide inhibition in lithium–sulfur batteries. Interdiscip. Mater. 3(2), 306–315 (2024). https://doi.org/10.1002/idm2.12143
- C. Shen, J. Meng, M. Yan, X. Liao, H. Wang et al., Catalytic growth of ionic conductive lithium nitride nanowire array for dendrite-free lithium metal anode. Adv. Funct. Mater. 34(44), 2406445 (2024). https://doi.org/10.1002/adfm.202406445
- F. Tao, K. Yan, C. Dong, J. Wang, Q. Pan et al., Electric-dipole coupling ion-dipole engineering induced rational solvation-desolvation behavior for constructing stable solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(21), e202503037 (2025). https://doi.org/10.1002/anie.202503037
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
- S. Li, W. Zhang, J. Zheng, M. Lv, H. Song et al., Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid-state electrolytes. Adv. Energy Mater. 11(2), 2000779 (2021). https://doi.org/10.1002/aenm.202000779
- H. Al Salem, G. Babu, C.V. Rao, L.M.R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137(36), 11542–11545 (2015). https://doi.org/10.1021/jacs.5b04472
- G. Li, W. Qiu, W. Gao, Y. Zhu, X. Zhang et al., Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a bi-service matrix for superior lithium–sulfur electrochemistry. Adv. Funct. Mater. 32(32), 2202853 (2022). https://doi.org/10.1002/adfm.202202853
- Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
- W. Bi, C. Li, D. Yang, Y.-Z. Zhang, L. Hu et al., MOF-derived ultrathin carbon nanosheets integrated with telluride nanops: synergistic polysulfide adsorption and catalytic sites for enhanced sulfur redox reactions. Energy Environ. Sci. 18(4), 1929–1940 (2025). https://doi.org/10.1039/D4EE04689G
- X. Zhang, X. Zhang, X. Wang, G. Cui, H. Pan et al., Engineering spin states of metal sites toward advanced lithium–sulfur batteries. Energy Environ. Sci. 18(8), 3553–3567 (2025). https://doi.org/10.1039/d4ee05582a
- H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
- Y. Huang, L. Lin, Y. Zhang, L. Liu, B. Sa et al., Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li-S full batteries. Nano-Micro Lett. 15(1), 67 (2023). https://doi.org/10.1007/s40820-023-01037-1
- W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano 15(4), 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
- L. Zhang, J. Bi, T. Liu, X. Chu, H. Lv et al., TiN/TiC heterostructures embedded with single tungsten atoms enhance polysulfide entrapment and conversion for high-capacity lithium-sulfur battery applications. Energy Storage Mater. 54, 410–420 (2023). https://doi.org/10.1016/j.ensm.2022.10.050
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 33(44), e2105947 (2021). https://doi.org/10.1002/adma.202105947
- Y. Zhang, C. Kang, W. Zhao, Y. Song, J. Zhu et al., D-p hybridization-induced “trapping–coupling–conversion” enables high-efficiency Nb single-atom catalysis for Li–S batteries. J. Am. Chem. Soc. 145(3), 1728–1739 (2023). https://doi.org/10.1021/jacs.2c10345
- T. Zhou, J. Liang, S. Ye, Q. Zhang, J. Liu, Fundamental, application and opportunities of single atom catalysts for Li-S batteries. Energy Storage Mater. 55, 322–355 (2023). https://doi.org/10.1016/j.ensm.2022.12.002
- Y. Song, L. Zou, C. Wei, Y. Zhou, Y. Hu, Single-atom electrocatalysts for lithium–sulfur chemistry: design principle, mechanism, and outlook. Carbon Energy 5(4), e286 (2023). https://doi.org/10.1002/cey2.286
- Y. Ding, Q. Cheng, J. Wu, T. Yan, Z. Shi et al., Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe–N2 mediator promises durable Li–S batteries. Adv. Mater. 34(28), 2202256 (2022). https://doi.org/10.1002/adma.202202256
- T. Huang, Y. Sun, J. Wu, Z. Shi, Y. Ding et al., Altering local chemistry of single-atom coordination boosts bidirectional polysulfide conversion of Li–S batteries. Adv. Funct. Mater. 32(39), 2203902 (2022). https://doi.org/10.1002/adfm.202203902
- R. Lin, R. Zhang, C. Wang, X.-Q. Yang, H.L. Xin, Temimagenet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images. Sci. Rep. 11(1), 5386 (2021). https://doi.org/10.1038/s41598-021-84499-w
- Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye et al., Synergistic Fe−Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 62(15), e202219191 (2023). https://doi.org/10.1002/anie.202219191
- Y. Liu, S. Yuan, C. Sun, C. Wang, X. Liu et al., Optimizing Fe-3d electron delocalization by asymmetric Fe–Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy Mater. 13(46), 2302719 (2023). https://doi.org/10.1002/aenm.202302719
- Y. Pan, C. Liu, N. Zhang, M. Li, M. Wang et al., Electron induction of atomically dispersed Fe sites by adjacent Te atoms promotes CO2 activation in electroreduction. Chem Catal. 3(6), 100610 (2023). https://doi.org/10.1016/j.checat.2023.100610
- L. Ren, J. Liu, Y. Zhao, Y. Wang, X. Lu et al., Regulating electronic structure of Fe–N4 single atomic catalyst via neighboring sulfur doping for high performance lithium–sulfur batteries. Adv. Funct. Mater. 33(12), 2210509 (2023). https://doi.org/10.1002/adfm.202210509
- Z. Chen, X. Su, J. Ding, N. Yang, W. Zuo et al., Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 308, 121206 (2022). https://doi.org/10.1016/j.apcatb.2022.121206
- Z. Wu, G. Liang, K.P. Wei, J. Zou, W. Zhang et al., Structural distortion in the wadsley-Roth niobium molybdenum oxide phase triggering extraordinarily stable battery performance. Angew. Chem. Int. Ed. 63(9), e202317941 (2024). https://doi.org/10.1002/anie.202317941
- W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34(11), 2106370 (2022). https://doi.org/10.1002/adma.202106370
- Y. Zhang, J. Liu, J. Wang, Y. Zhao, D. Luo et al., Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries. Angew. Chem. Int. Ed. 60(51), 26622–26629 (2021). https://doi.org/10.1002/anie.202108882
- M. He, L. Zhu, Y. Liu, Y. Jia, Y. Hao et al., Highly solvating electrolytes with core-shell solvation structure for lean-electrolyte lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(3), e202415053 (2025). https://doi.org/10.1002/anie.202415053
- B. Wang, L. Wang, D. Ding, Y. Zhai, F. Wang et al., Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium–sulfur batteries. Adv. Mater. 34(50), 2204403 (2022). https://doi.org/10.1002/adma.202204403
- Q. Wu, K. Chen, Z. Shadike, C. Li, Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li–S batteries. ACS Nano 18(21), 13468–13483 (2024). https://doi.org/10.1021/acsnano.3c09919
- F. Zhou, R. Wang, S. He, X. Liu, S. Liu et al., Defect-rich hierarchical porous Mn-doped CoP hollow microspheres accelerate polysulfide conversion. Adv. Funct. Mater. 33(8), 2211124 (2023). https://doi.org/10.1002/adfm.202211124
- Y. Kong, X. Qiu, Y. Xue, G. Li, L. Qi et al., Sulfonic acid-functionalized graphdiyne for effective Li-S battery separators. J. Am. Chem. Soc. 146(34), 23764–23774 (2024). https://doi.org/10.1021/jacs.4c05107
- C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang et al., Engineering d-p orbital hybridization with P, S co-coordination asymmetric configuration of single atoms toward high-rate and long-cycling lithium–sulfur battery. Adv. Mater. 36(38), 2407070 (2024). https://doi.org/10.1002/adma.202407070
- X. Wang, X. Zhang, Y. Zhang, J. Wang, J. Liu et al., Clustering bimetallic M–N–C catalyst: a synergistic approach to advancing sulfur conversion kinetics for high-performance lithium-sulfur batteries. Adv. Energy Mater. 14(31), 2400926 (2024). https://doi.org/10.1002/aenm.202400926
- S. Li, J. Lin, B. Chang, D. Yang, D.-Y. Wu et al., Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 55, 94–104 (2023). https://doi.org/10.1016/j.ensm.2022.11.045
References
G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
S. Dörfler, S. Walus, J. Locke, A. Fotouhi, D.J. Auger et al., Recent progress and emerging application areas for lithium–sulfur battery technology. Energy Technol. 9(1), 2000694 (2021). https://doi.org/10.1002/ente.202000694
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber et al., Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5(16), 1401986 (2015). https://doi.org/10.1002/aenm.201401986
M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton et al., Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015). https://doi.org/10.1039/C5EE01388G
A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013). https://doi.org/10.1021/ar300179v
W. Yao, K. Liao, T. Lai, H. Sul, A. Manthiram, Rechargeable metal-sulfur batteries: key materials to mechanisms. Chem. Rev. 124(8), 4935–5118 (2024). https://doi.org/10.1021/acs.chemrev.3c00919
C. Zhou, C. Dong, W. Wang, Y. Tian, C. Shen et al., An ultrathin and crack-free metal-organic framework film for effective polysulfide inhibition in lithium–sulfur batteries. Interdiscip. Mater. 3(2), 306–315 (2024). https://doi.org/10.1002/idm2.12143
C. Shen, J. Meng, M. Yan, X. Liao, H. Wang et al., Catalytic growth of ionic conductive lithium nitride nanowire array for dendrite-free lithium metal anode. Adv. Funct. Mater. 34(44), 2406445 (2024). https://doi.org/10.1002/adfm.202406445
F. Tao, K. Yan, C. Dong, J. Wang, Q. Pan et al., Electric-dipole coupling ion-dipole engineering induced rational solvation-desolvation behavior for constructing stable solid-state lithium metal batteries. Angew. Chem. Int. Ed. 64(21), e202503037 (2025). https://doi.org/10.1002/anie.202503037
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
S. Li, W. Zhang, J. Zheng, M. Lv, H. Song et al., Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid-state electrolytes. Adv. Energy Mater. 11(2), 2000779 (2021). https://doi.org/10.1002/aenm.202000779
H. Al Salem, G. Babu, C.V. Rao, L.M.R. Arava, Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137(36), 11542–11545 (2015). https://doi.org/10.1021/jacs.5b04472
G. Li, W. Qiu, W. Gao, Y. Zhu, X. Zhang et al., Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a bi-service matrix for superior lithium–sulfur electrochemistry. Adv. Funct. Mater. 32(32), 2202853 (2022). https://doi.org/10.1002/adfm.202202853
Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
W. Bi, C. Li, D. Yang, Y.-Z. Zhang, L. Hu et al., MOF-derived ultrathin carbon nanosheets integrated with telluride nanops: synergistic polysulfide adsorption and catalytic sites for enhanced sulfur redox reactions. Energy Environ. Sci. 18(4), 1929–1940 (2025). https://doi.org/10.1039/D4EE04689G
X. Zhang, X. Zhang, X. Wang, G. Cui, H. Pan et al., Engineering spin states of metal sites toward advanced lithium–sulfur batteries. Energy Environ. Sci. 18(8), 3553–3567 (2025). https://doi.org/10.1039/d4ee05582a
H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
Y. Huang, L. Lin, Y. Zhang, L. Liu, B. Sa et al., Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li-S full batteries. Nano-Micro Lett. 15(1), 67 (2023). https://doi.org/10.1007/s40820-023-01037-1
W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano 15(4), 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
L. Zhang, J. Bi, T. Liu, X. Chu, H. Lv et al., TiN/TiC heterostructures embedded with single tungsten atoms enhance polysulfide entrapment and conversion for high-capacity lithium-sulfur battery applications. Energy Storage Mater. 54, 410–420 (2023). https://doi.org/10.1016/j.ensm.2022.10.050
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng et al., Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 33(44), e2105947 (2021). https://doi.org/10.1002/adma.202105947
Y. Zhang, C. Kang, W. Zhao, Y. Song, J. Zhu et al., D-p hybridization-induced “trapping–coupling–conversion” enables high-efficiency Nb single-atom catalysis for Li–S batteries. J. Am. Chem. Soc. 145(3), 1728–1739 (2023). https://doi.org/10.1021/jacs.2c10345
T. Zhou, J. Liang, S. Ye, Q. Zhang, J. Liu, Fundamental, application and opportunities of single atom catalysts for Li-S batteries. Energy Storage Mater. 55, 322–355 (2023). https://doi.org/10.1016/j.ensm.2022.12.002
Y. Song, L. Zou, C. Wei, Y. Zhou, Y. Hu, Single-atom electrocatalysts for lithium–sulfur chemistry: design principle, mechanism, and outlook. Carbon Energy 5(4), e286 (2023). https://doi.org/10.1002/cey2.286
Y. Ding, Q. Cheng, J. Wu, T. Yan, Z. Shi et al., Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe–N2 mediator promises durable Li–S batteries. Adv. Mater. 34(28), 2202256 (2022). https://doi.org/10.1002/adma.202202256
T. Huang, Y. Sun, J. Wu, Z. Shi, Y. Ding et al., Altering local chemistry of single-atom coordination boosts bidirectional polysulfide conversion of Li–S batteries. Adv. Funct. Mater. 32(39), 2203902 (2022). https://doi.org/10.1002/adfm.202203902
R. Lin, R. Zhang, C. Wang, X.-Q. Yang, H.L. Xin, Temimagenet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images. Sci. Rep. 11(1), 5386 (2021). https://doi.org/10.1038/s41598-021-84499-w
Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye et al., Synergistic Fe−Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 62(15), e202219191 (2023). https://doi.org/10.1002/anie.202219191
Y. Liu, S. Yuan, C. Sun, C. Wang, X. Liu et al., Optimizing Fe-3d electron delocalization by asymmetric Fe–Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy Mater. 13(46), 2302719 (2023). https://doi.org/10.1002/aenm.202302719
Y. Pan, C. Liu, N. Zhang, M. Li, M. Wang et al., Electron induction of atomically dispersed Fe sites by adjacent Te atoms promotes CO2 activation in electroreduction. Chem Catal. 3(6), 100610 (2023). https://doi.org/10.1016/j.checat.2023.100610
L. Ren, J. Liu, Y. Zhao, Y. Wang, X. Lu et al., Regulating electronic structure of Fe–N4 single atomic catalyst via neighboring sulfur doping for high performance lithium–sulfur batteries. Adv. Funct. Mater. 33(12), 2210509 (2023). https://doi.org/10.1002/adfm.202210509
Z. Chen, X. Su, J. Ding, N. Yang, W. Zuo et al., Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 308, 121206 (2022). https://doi.org/10.1016/j.apcatb.2022.121206
Z. Wu, G. Liang, K.P. Wei, J. Zou, W. Zhang et al., Structural distortion in the wadsley-Roth niobium molybdenum oxide phase triggering extraordinarily stable battery performance. Angew. Chem. Int. Ed. 63(9), e202317941 (2024). https://doi.org/10.1002/anie.202317941
W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium–sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34(11), 2106370 (2022). https://doi.org/10.1002/adma.202106370
Y. Zhang, J. Liu, J. Wang, Y. Zhao, D. Luo et al., Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries. Angew. Chem. Int. Ed. 60(51), 26622–26629 (2021). https://doi.org/10.1002/anie.202108882
M. He, L. Zhu, Y. Liu, Y. Jia, Y. Hao et al., Highly solvating electrolytes with core-shell solvation structure for lean-electrolyte lithium-sulfur batteries. Angew. Chem. Int. Ed. 64(3), e202415053 (2025). https://doi.org/10.1002/anie.202415053
B. Wang, L. Wang, D. Ding, Y. Zhai, F. Wang et al., Zinc-assisted cobalt ditelluride polyhedra inducing lattice strain to endow efficient adsorption-catalysis for high-energy lithium–sulfur batteries. Adv. Mater. 34(50), 2204403 (2022). https://doi.org/10.1002/adma.202204403
Q. Wu, K. Chen, Z. Shadike, C. Li, Relay-type catalysis by a dual-metal single-atom system in a waste biomass derivative host for high-rate and durable Li–S batteries. ACS Nano 18(21), 13468–13483 (2024). https://doi.org/10.1021/acsnano.3c09919
F. Zhou, R. Wang, S. He, X. Liu, S. Liu et al., Defect-rich hierarchical porous Mn-doped CoP hollow microspheres accelerate polysulfide conversion. Adv. Funct. Mater. 33(8), 2211124 (2023). https://doi.org/10.1002/adfm.202211124
Y. Kong, X. Qiu, Y. Xue, G. Li, L. Qi et al., Sulfonic acid-functionalized graphdiyne for effective Li-S battery separators. J. Am. Chem. Soc. 146(34), 23764–23774 (2024). https://doi.org/10.1021/jacs.4c05107
C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang et al., Engineering d-p orbital hybridization with P, S co-coordination asymmetric configuration of single atoms toward high-rate and long-cycling lithium–sulfur battery. Adv. Mater. 36(38), 2407070 (2024). https://doi.org/10.1002/adma.202407070
X. Wang, X. Zhang, Y. Zhang, J. Wang, J. Liu et al., Clustering bimetallic M–N–C catalyst: a synergistic approach to advancing sulfur conversion kinetics for high-performance lithium-sulfur batteries. Adv. Energy Mater. 14(31), 2400926 (2024). https://doi.org/10.1002/aenm.202400926
S. Li, J. Lin, B. Chang, D. Yang, D.-Y. Wu et al., Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 55, 94–104 (2023). https://doi.org/10.1016/j.ensm.2022.11.045