Octopus-Inspired Self-Adaptive Hydrogel Gripper Capable of Manipulating Ultra-Soft Objects
Corresponding Author: Xiaolong Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 33
Abstract
Octopuses, due to their flexible arms, marvelous adaptability, and powerful suckers, are able to effortlessly grasp and disengage various objects in the marine surrounding without causing devastation. However, manipulating delicate objects such as soft and fragile foods underwater require gentle contact and stable adhesion, which poses a serious challenge to now available soft grippers. Inspired by the sucker infundibulum structure and flexible tentacles of octopus, herein we developed a hydraulically actuated hydrogel soft gripper with adaptive maneuverability by coupling multiple hydrogen bond-mediated supramolecular hydrogels and vat polymerization three-dimensional printing, in which hydrogel bionic sucker is composed of a tunable curvature membrane, a negative pressure cavity, and a pneumatic chamber. The design of the sucker structure with the alterable curvature membrane is conducive to realize the reliable and gentle switchable adhesion of the hydrogel soft gripper. As a proof-of-concept, the adaptive hydrogel soft gripper is capable of implement diversified underwater tasks, including gingerly grasping fragile foods like egg yolks and tofu, as well as underwater robots and vehicles that station-keeping and crawling based on switchable adhesion. This study therefore provides a transformative strategy for the design of novel soft grippers that will render promising utilities for underwater exploration soft robotics.
Highlights:
1 3D printable supramolecular hydrogels with tunable mechanical properties and stiffness adaptability were enabled by strong and weak H-bonding cooperative interactions and microphase separation.
2 Sucker structure with an alterable membrane was designed and fabricated with 3D printing to realize reliable and gentle switchable adhesion.
3 Octopus-inspired hydrogel gripper that is capable of delicately handling ultra-soft underwater objects in the form of nondestructive surface release was achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Baik, D.W. Kim, Y. Park, T.-J. Lee, S.H. Bhang et al., A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546(7658), 396–400 (2017). https://doi.org/10.1038/nature22382
- S.T. Frey, A.B.M.T. Haque, R. Tutika, E.V. Krotz, C. Lee et al., Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion. Sci. Adv. 8(28), eabq1905 (2022). https://doi.org/10.1126/sciadv.abq1905
- J.A. Sandoval, M. Ishida, S. Jadhav, S. Huen, M.T. Tolley, Tuning the morphology of suction discs to enable directional adhesion for locomotion in wet environments. Soft Robot. 9(6), 1083–1097 (2022). https://doi.org/10.1089/soro.2021.0096
- K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
- J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2022). https://doi.org/10.1007/s40820-022-00980-9
- C. Qian, M. Tong, X. Yu, S. Zhuang, H. Gao, Octopus-inspired microgripper for deformation-controlled biological sample manipulation. IEEE Trans. Neural Netw. Learn. Syst. 33(5), 1857–1866 (2022). https://doi.org/10.1109/TNNLS.2021.3070631
- D. Sui, Y. Zhu, S. Zhao, T. Wang, S.K. Agrawal et al., A bioinspired soft swallowing gripper for universal adaptable grasping. Soft Robot. 9(1), 36–56 (2022). https://doi.org/10.1089/soro.2019.0106
- M. Wu, X. Zheng, R. Liu, N. Hou, W.H. Afridi et al., Glowing sucker Octopus (Stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing. Adv. Sci. 9(17), e2104382 (2022). https://doi.org/10.1002/advs.202104382
- Z. Xie, F. Yuan, J. Liu, L. Tian, B. Chen et al., Octopus-inspired sensorized soft arm for environmental interaction. Sci. Robot. 8(84), eadh7852 (2023). https://doi.org/10.1126/scirobotics.adh7852
- K. Tai, A.-R. El-Sayed, M. Shahriari, M. Biglarbegian, S. Mahmud, State of the art robotic grippers and applications. Robotics 5(2), 11 (2016). https://doi.org/10.3390/robotics5020011
- L. Shi, Y. Wang, X. Xu, D. Liu, Z. Ji et al., Vat photopolymerization 3D printing hydrogels and bionic adhesive devices: a minireview. Adv. Mater. Technol. 9(11), 2301853 (2024). https://doi.org/10.1002/admt.202301853
- F. Jiang, Z. Zhang, X. Wang, G. Cheng, Z. Zhang et al., Pneumatically actuated self-healing bionic crawling soft robot. J. Intell. Robot. Syst. 100(2), 445–454 (2020). https://doi.org/10.1007/s10846-020-01187-z
- M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner et al., An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 6(3), 036002 (2011). https://doi.org/10.1088/1748-3182/6/3/036002
- M. Sfakiotakis, A. Kazakidi, D.P. Tsakiris, Octopus-inspired multi-arm robotic swimming. Bioinspir. Biomim. 10(3), 035005 (2015). https://doi.org/10.1088/1748-3190/10/3/035005
- M. Wu, W.H. Afridi, J. Wu, R.H. Afridi, K. Wang et al., Octopus-inspired underwater soft robotic gripper with crawling and swimming capabilities. Research 7, 0456 (2024). https://doi.org/10.34133/research.0456
- Y. Wang, D. Liu, C. Wang, J. Wu, X. Xu et al., 3D printing of octopi-inspired hydrogel suckers with underwater adaptation for reversible adhesion. Chem. Eng. J. 457, 141268 (2023). https://doi.org/10.1016/j.cej.2022.141268
- E. Papadakis, D.P. Tsakiris, M. Sfakiotakis, An octopus-inspired soft pneumatic robotic arm. Biomimetics 9(12), 773 (2024). https://doi.org/10.3390/biomimetics9120773
- J. Shintake, V. Cacucciolo, D. Floreano, H. Shea, Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018). https://doi.org/10.1002/adma.201707035
- J. Qu, Z. Yu, W. Tang, Y. Xu, B. Mao et al., Advanced technologies and applications of robotic soft grippers. Adv. Mater. Technol. 9(11), 2301004 (2024). https://doi.org/10.1002/admt.202301004
- S. Hu, Y. Fang, C. Liang, M. Turunen, O. Ikkala et al., Thermally trainable dual network hydrogels. Nat. Commun. 14(1), 3717 (2023). https://doi.org/10.1038/s41467-023-39446-w
- H. Zeng, H. Zhang, O. Ikkala, A. Priimagi, Associative learning by classical conditioning in liquid crystal network actuators. Matter 2(1), 194–206 (2020). https://doi.org/10.1016/j.matt.2019.10.019
- G. Chen, T. Lin, S. Ding, S. Chen, A. Ji et al., Design and test of an active pneumatic soft wrist for soft grippers. Actuators 11(11), 311 (2022). https://doi.org/10.3390/act11110311
- Z. Xie, A.G. Domel, N. An, C. Green, Z. Gong et al., Octopus arm -inspired-inspired tapered soft actuators with suckers for improved grasping. Soft Robot. 7(5), 639–648 (2020). https://doi.org/10.1089/soro.2019.0082
- M. Hua, X. He, Soft-fiber-reinforced tough and fatigue resistant hydrogels. Matter 4(6), 1755–1757 (2021). https://doi.org/10.1016/j.matt.2021.05.006
- A. Eklund, O. Ikkala, H. Zhang, Highly efficient switchable underwater adhesion in channeled hydrogel networks. Adv. Funct. Mater. 34(35), 2214091 (2024). https://doi.org/10.1002/adfm.202214091
- J. Wu, Z. Zhang, Z. Wu, D. Liu, X. Yang et al., Strong and ultra-tough supramolecular hydrogel enabled by strain-induced microphase separation. Adv. Funct. Mater. 33(3), 2210395 (2023). https://doi.org/10.1002/adfm.202210395
- W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16(1), 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
- Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
- D. Hu, D. Liu, Y. Hu, Y. Wang, Y. Lu et al., Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains. Nano Res. 17(11), 9784–9795 (2024). https://doi.org/10.1007/s12274-024-6968-8
- B. Zhu, D. Liu, J. Wu, C. Meng, X. Yang et al., Slippery core-sheath hydrogel optical fiber built by catalytically triggered interface radical polymerization. Adv. Funct. Mater. 34(18), 2309795 (2024). https://doi.org/10.1002/adfm.202309795
- D. Liu, Y. Cao, P. Jiang, Y. Wang, Y. Lu et al., Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19(14), e2206819 (2023). https://doi.org/10.1002/smll.202206819
- H. Feng, Y. Ma, Z. Zhang, S. Yang, Z. Ma et al., Reversing hydrogel adhesion property via firmly anchoring thin adhesive coatings. Adv. Funct. Mater. 32(15), 2111278 (2022). https://doi.org/10.1002/adfm.202111278
- Z. Zhang, C. Qin, H. Feng, Y. Xiang, B. Yu et al., Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy. Nat. Commun. 13(1), 6964 (2022). https://doi.org/10.1038/s41467-022-34816-2
- Y. Zhang, R. Xu, W. Zhao, X. Zhao, L. Zhang et al., Successive redox-reaction-triggered interface radical polymerization for growing hydrogel coatings on diverse substrates. Angew. Chem. Int. Ed. 61(39), e202209741 (2022). https://doi.org/10.1002/anie.202209741
- Y. Zhao, C. Xuan, X. Qian, Y. Alsaid, M. Hua et al., Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 4(33), eaax7112 (2019). https://doi.org/10.1126/scirobotics.aax7112
- H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16(1), 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
- J. Wei, R. Li, L. Li, W. Wang, T. Chen, Touch-responsive hydrogel for biomimetic flytrap-like soft actuator. Nano-Micro Lett. 14(1), 182 (2022). https://doi.org/10.1007/s40820-022-00931-4
- C.-Y. Lo, Y. Zhao, C. Kim, Y. Alsaid, R. Khodambashi et al., Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today 50, 35–43 (2021). https://doi.org/10.1016/j.mattod.2021.05.008
- H. Zhang, H. Zeng, A. Eklund, H. Guo, A. Priimagi et al., Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nat. Nanotechnol. 17(12), 1303–1310 (2022). https://doi.org/10.1038/s41565-022-01241-x
- Q. Chen, D. Schott, J. Jovanova, Model-based design of variable stiffness soft gripper actuated by smart hydrogels. Soft Robot. 11(6), 924–934 (2024). https://doi.org/10.1089/soro.2023.0185
- H. Yuk, S. Lin, C. Ma, M. Takaffoli, N.X. Fang et al., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017). https://doi.org/10.1038/ncomms14230
- Y. Wang, X. Xu, D. Liu, J. Wu, X. Yang et al., Dimethyl sulfoxide mediated high-fidelity 3D printing of hydrogels. Addit. Manuf. 91, 104346 (2024). https://doi.org/10.1016/j.addma.2024.104346
- X. Xu, Y. Wang, D. Liu, X. Yang, Y. Lu et al., Sophisticated structural ceramics shaped from 3D printed hydrogel preceramic skeleton. Adv. Mater. 36(33), e2404469 (2024). https://doi.org/10.1002/adma.202404469
- D. Liu, P. Jiang, Y. Hu, Y. Lu, Y. Wang et al., Slippery hydrogel with desiccation-tolerant ‘skin’ for high-precision additive manufacturing. Int. J. Extreme Manuf. 6(2), 025501 (2024). https://doi.org/10.1088/2631-7990/ad1730
- K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
- C. Fan, B. Liu, Z. Xu, C. Cui, T. Wu et al., Polymerization of N-acryloylsemicarbazide: a facile and versatile strategy to tailor-make highly stiff and tough hydrogels. Mater. Horiz. 7(4), 1160–1170 (2020). https://doi.org/10.1039/C9MH01844A
- Z. Ji, B. Xu, Z. Su, X. Wang, Y. Lyu et al., Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability. Int. J. Extreme Manuf. 7(2), 025001 (2025). https://doi.org/10.1088/2631-7990/ad9dc0
References
S. Baik, D.W. Kim, Y. Park, T.-J. Lee, S.H. Bhang et al., A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546(7658), 396–400 (2017). https://doi.org/10.1038/nature22382
S.T. Frey, A.B.M.T. Haque, R. Tutika, E.V. Krotz, C. Lee et al., Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion. Sci. Adv. 8(28), eabq1905 (2022). https://doi.org/10.1126/sciadv.abq1905
J.A. Sandoval, M. Ishida, S. Jadhav, S. Huen, M.T. Tolley, Tuning the morphology of suction discs to enable directional adhesion for locomotion in wet environments. Soft Robot. 9(6), 1083–1097 (2022). https://doi.org/10.1089/soro.2021.0096
K. Zheng, C. Zheng, L. Zhu, B. Yang, X. Jin et al., Machine learning enabled reusable adhesion, entangled network-based hydrogel for long-term, high-fidelity EEG recording and attention assessment. Nano-Micro Lett. 17(1), 281 (2025). https://doi.org/10.1007/s40820-025-01780-7
J. Zhang, Y. Hu, L. Zhang, J. Zhou, A. Lu, Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 15(1), 8 (2022). https://doi.org/10.1007/s40820-022-00980-9
C. Qian, M. Tong, X. Yu, S. Zhuang, H. Gao, Octopus-inspired microgripper for deformation-controlled biological sample manipulation. IEEE Trans. Neural Netw. Learn. Syst. 33(5), 1857–1866 (2022). https://doi.org/10.1109/TNNLS.2021.3070631
D. Sui, Y. Zhu, S. Zhao, T. Wang, S.K. Agrawal et al., A bioinspired soft swallowing gripper for universal adaptable grasping. Soft Robot. 9(1), 36–56 (2022). https://doi.org/10.1089/soro.2019.0106
M. Wu, X. Zheng, R. Liu, N. Hou, W.H. Afridi et al., Glowing sucker Octopus (Stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing. Adv. Sci. 9(17), e2104382 (2022). https://doi.org/10.1002/advs.202104382
Z. Xie, F. Yuan, J. Liu, L. Tian, B. Chen et al., Octopus-inspired sensorized soft arm for environmental interaction. Sci. Robot. 8(84), eadh7852 (2023). https://doi.org/10.1126/scirobotics.adh7852
K. Tai, A.-R. El-Sayed, M. Shahriari, M. Biglarbegian, S. Mahmud, State of the art robotic grippers and applications. Robotics 5(2), 11 (2016). https://doi.org/10.3390/robotics5020011
L. Shi, Y. Wang, X. Xu, D. Liu, Z. Ji et al., Vat photopolymerization 3D printing hydrogels and bionic adhesive devices: a minireview. Adv. Mater. Technol. 9(11), 2301853 (2024). https://doi.org/10.1002/admt.202301853
F. Jiang, Z. Zhang, X. Wang, G. Cheng, Z. Zhang et al., Pneumatically actuated self-healing bionic crawling soft robot. J. Intell. Robot. Syst. 100(2), 445–454 (2020). https://doi.org/10.1007/s10846-020-01187-z
M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner et al., An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 6(3), 036002 (2011). https://doi.org/10.1088/1748-3182/6/3/036002
M. Sfakiotakis, A. Kazakidi, D.P. Tsakiris, Octopus-inspired multi-arm robotic swimming. Bioinspir. Biomim. 10(3), 035005 (2015). https://doi.org/10.1088/1748-3190/10/3/035005
M. Wu, W.H. Afridi, J. Wu, R.H. Afridi, K. Wang et al., Octopus-inspired underwater soft robotic gripper with crawling and swimming capabilities. Research 7, 0456 (2024). https://doi.org/10.34133/research.0456
Y. Wang, D. Liu, C. Wang, J. Wu, X. Xu et al., 3D printing of octopi-inspired hydrogel suckers with underwater adaptation for reversible adhesion. Chem. Eng. J. 457, 141268 (2023). https://doi.org/10.1016/j.cej.2022.141268
E. Papadakis, D.P. Tsakiris, M. Sfakiotakis, An octopus-inspired soft pneumatic robotic arm. Biomimetics 9(12), 773 (2024). https://doi.org/10.3390/biomimetics9120773
J. Shintake, V. Cacucciolo, D. Floreano, H. Shea, Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018). https://doi.org/10.1002/adma.201707035
J. Qu, Z. Yu, W. Tang, Y. Xu, B. Mao et al., Advanced technologies and applications of robotic soft grippers. Adv. Mater. Technol. 9(11), 2301004 (2024). https://doi.org/10.1002/admt.202301004
S. Hu, Y. Fang, C. Liang, M. Turunen, O. Ikkala et al., Thermally trainable dual network hydrogels. Nat. Commun. 14(1), 3717 (2023). https://doi.org/10.1038/s41467-023-39446-w
H. Zeng, H. Zhang, O. Ikkala, A. Priimagi, Associative learning by classical conditioning in liquid crystal network actuators. Matter 2(1), 194–206 (2020). https://doi.org/10.1016/j.matt.2019.10.019
G. Chen, T. Lin, S. Ding, S. Chen, A. Ji et al., Design and test of an active pneumatic soft wrist for soft grippers. Actuators 11(11), 311 (2022). https://doi.org/10.3390/act11110311
Z. Xie, A.G. Domel, N. An, C. Green, Z. Gong et al., Octopus arm -inspired-inspired tapered soft actuators with suckers for improved grasping. Soft Robot. 7(5), 639–648 (2020). https://doi.org/10.1089/soro.2019.0082
M. Hua, X. He, Soft-fiber-reinforced tough and fatigue resistant hydrogels. Matter 4(6), 1755–1757 (2021). https://doi.org/10.1016/j.matt.2021.05.006
A. Eklund, O. Ikkala, H. Zhang, Highly efficient switchable underwater adhesion in channeled hydrogel networks. Adv. Funct. Mater. 34(35), 2214091 (2024). https://doi.org/10.1002/adfm.202214091
J. Wu, Z. Zhang, Z. Wu, D. Liu, X. Yang et al., Strong and ultra-tough supramolecular hydrogel enabled by strain-induced microphase separation. Adv. Funct. Mater. 33(3), 2210395 (2023). https://doi.org/10.1002/adfm.202210395
W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16(1), 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
D. Hu, D. Liu, Y. Hu, Y. Wang, Y. Lu et al., Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains. Nano Res. 17(11), 9784–9795 (2024). https://doi.org/10.1007/s12274-024-6968-8
B. Zhu, D. Liu, J. Wu, C. Meng, X. Yang et al., Slippery core-sheath hydrogel optical fiber built by catalytically triggered interface radical polymerization. Adv. Funct. Mater. 34(18), 2309795 (2024). https://doi.org/10.1002/adfm.202309795
D. Liu, Y. Cao, P. Jiang, Y. Wang, Y. Lu et al., Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19(14), e2206819 (2023). https://doi.org/10.1002/smll.202206819
H. Feng, Y. Ma, Z. Zhang, S. Yang, Z. Ma et al., Reversing hydrogel adhesion property via firmly anchoring thin adhesive coatings. Adv. Funct. Mater. 32(15), 2111278 (2022). https://doi.org/10.1002/adfm.202111278
Z. Zhang, C. Qin, H. Feng, Y. Xiang, B. Yu et al., Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy. Nat. Commun. 13(1), 6964 (2022). https://doi.org/10.1038/s41467-022-34816-2
Y. Zhang, R. Xu, W. Zhao, X. Zhao, L. Zhang et al., Successive redox-reaction-triggered interface radical polymerization for growing hydrogel coatings on diverse substrates. Angew. Chem. Int. Ed. 61(39), e202209741 (2022). https://doi.org/10.1002/anie.202209741
Y. Zhao, C. Xuan, X. Qian, Y. Alsaid, M. Hua et al., Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 4(33), eaax7112 (2019). https://doi.org/10.1126/scirobotics.aax7112
H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16(1), 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
J. Wei, R. Li, L. Li, W. Wang, T. Chen, Touch-responsive hydrogel for biomimetic flytrap-like soft actuator. Nano-Micro Lett. 14(1), 182 (2022). https://doi.org/10.1007/s40820-022-00931-4
C.-Y. Lo, Y. Zhao, C. Kim, Y. Alsaid, R. Khodambashi et al., Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today 50, 35–43 (2021). https://doi.org/10.1016/j.mattod.2021.05.008
H. Zhang, H. Zeng, A. Eklund, H. Guo, A. Priimagi et al., Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nat. Nanotechnol. 17(12), 1303–1310 (2022). https://doi.org/10.1038/s41565-022-01241-x
Q. Chen, D. Schott, J. Jovanova, Model-based design of variable stiffness soft gripper actuated by smart hydrogels. Soft Robot. 11(6), 924–934 (2024). https://doi.org/10.1089/soro.2023.0185
H. Yuk, S. Lin, C. Ma, M. Takaffoli, N.X. Fang et al., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017). https://doi.org/10.1038/ncomms14230
Y. Wang, X. Xu, D. Liu, J. Wu, X. Yang et al., Dimethyl sulfoxide mediated high-fidelity 3D printing of hydrogels. Addit. Manuf. 91, 104346 (2024). https://doi.org/10.1016/j.addma.2024.104346
X. Xu, Y. Wang, D. Liu, X. Yang, Y. Lu et al., Sophisticated structural ceramics shaped from 3D printed hydrogel preceramic skeleton. Adv. Mater. 36(33), e2404469 (2024). https://doi.org/10.1002/adma.202404469
D. Liu, P. Jiang, Y. Hu, Y. Lu, Y. Wang et al., Slippery hydrogel with desiccation-tolerant ‘skin’ for high-precision additive manufacturing. Int. J. Extreme Manuf. 6(2), 025501 (2024). https://doi.org/10.1088/2631-7990/ad1730
K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia et al., 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
C. Fan, B. Liu, Z. Xu, C. Cui, T. Wu et al., Polymerization of N-acryloylsemicarbazide: a facile and versatile strategy to tailor-make highly stiff and tough hydrogels. Mater. Horiz. 7(4), 1160–1170 (2020). https://doi.org/10.1039/C9MH01844A
Z. Ji, B. Xu, Z. Su, X. Wang, Y. Lyu et al., Advanced vat photopolymerization 3D printing of silicone rubber with high precision and superior stability. Int. J. Extreme Manuf. 7(2), 025001 (2025). https://doi.org/10.1088/2631-7990/ad9dc0