High-Performance Wide-Temperature Zinc-Ion Batteries with K+/C3N4 Co-Intercalated Ammonium Vanadate Cathodes
Corresponding Author: Bin Fei
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 48
Abstract
NH4V4O10 (NVO) is considered a promising cathode material for aqueous zinc-ion batteries due to its high theoretical capacity. However, its practical application is limited by irreversible deamination, structural collapse, and sluggish reaction kinetics during cycling. Herein, K+ and C3N4 co-intercalated NVO (KNVO-C3N4) nanosheets with expanded interlayer spacing are synthesized for the first time to achieve high-rate, stable, and wide-temperature cathodes. Molecular dynamics and experimental results confirm that there is an optimal C3N4 content to achieve higher reaction kinetics. The synergistic effect of K+ and C3N4 co-intercalation significantly reduces the electrostatic interaction between Zn2+ and the [VOn] layer, improves the specific capacity and cycling stability. Consequently, the KNVO-C3N4 electrode displays outstanding electrochemical performance at room temperature and under extreme environments. It exhibits excellent rate performance (228.4 mAh g−1 at 20 A g−1), long-term cycling stability (174.2 mAh g−1 after 10,000 cycles at 20 A g−1), and power/energy density (210.0 Wh kg−1 at 14,200 W kg−1) at room temperature. Notably, it shows remarkable storage performance at − 20 °C (111.3 mAh g−1 at 20 A g−1) and 60 °C (208.6 mAh g−1 at 20 A g−1). This strategy offers a novel approach to developing high-performance cathodes capable of operating under extreme temperatures.
Highlights:
1 Molecular dynamics and experimental results confirm that adjusting the interlayer spacing by changing the C3N4 content effectively improves the reaction kinetics.
2 The synergistic effect of K+ and C3N4 co-intercalation lowers the energy barrier, reduces the electrostatic interaction, and enhances the kinetics and structural stability.
3 The K+/C3N4 co-intercalated NH4V4O10 cathode exhibits excellent electrochemical performance at room temperature and under extreme environments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- J. Heo, D. Dong, Z. Wang, F. Chen, C. Wang, Electrolyte design for aqueous Zn batteries. Joule 9(4), 101844 (2025). https://doi.org/10.1016/j.joule.2025.101844
- L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
- R. Sinha, X. Xie, Y. Yang, Y. Li, Y. Xue et al., Failure mechanisms and strategies for vanadium oxide-based cathode in aqueous zinc batteries. Adv. Energy Mater. 15(14), 2404815 (2025). https://doi.org/10.1002/aenm.202404815
- L. Zhang, Y. Han, Y. Geng, H. Zhang, H. Liu et al., Aqueous zinc-ion batteries with boosted stability and kinetics under a wide temperature range. Angew. Chem. Int. Ed. 64(20), e202500434 (2025). https://doi.org/10.1002/anie.202500434
- Z. Shen, Z. Zhai, Y. Liu, X. Bao, Y. Zhu et al., Hydrogel electrolytes-based rechargeable zinc-ion batteries under harsh conditions. Nano-Micro Lett. 17(1), 227 (2025). https://doi.org/10.1007/s40820-025-01727-y
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- H. Niu, H. Liu, L. Yang, T. Kang, T. Shen et al., Impacts of distorted local chemical coordination on electrochemical performance in hydrated vanadium pentoxide. Nat. Commun. 15(1), 9421 (2024). https://doi.org/10.1038/s41467-024-53785-2
- M. Wu, C. Shi, J. Yang, Y. Zong, Y. Chen et al., The LiV3O8 superlattice cathode with optimized zinc ion insertion chemistry for high mass-loading aqueous zinc-ion batteries. Adv. Mater. 36(23), e2310434 (2024). https://doi.org/10.1002/adma.202310434
- Y. Zeng, X.F. Lu, S.L. Zhang, D. Luan, S. Li et al., Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 60(41), 22189–22194 (2021). https://doi.org/10.1002/anie.202107697
- Z. Sang, J. Liu, X. Zhang, L. Yin, F. Hou et al., One-dimensional π-d conjugated conductive metal-organic framework with dual redox-active sites for high-capacity and durable cathodes for aqueous zinc batteries. ACS Nano 17(3), 3077–3087 (2023). https://doi.org/10.1021/acsnano.2c11974
- D. Chen, M. Yang, Y. Ming, W. Cai, S. Shi et al., Synergetic effect of Mo-doped and oxygen vacancies endows vanadium oxide with high-rate and long-life for aqueous zinc ion battery. Small 20(48), 2405168 (2024). https://doi.org/10.1002/smll.202405168
- W. Lv, Z. Shen, X. Li, J. Meng, W. Yang et al., Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: an integrating biomass carbon strategy. Nano-Micro Lett. 16(1), 109 (2024). https://doi.org/10.1007/s40820-024-01334-3
- P. Zhang, Y. Gong, S. Fan, Z. Luo, J. Hu et al., Glutamic acid induced proton substitution of sodium vanadate cathode promotes high performance in aqueous zinc-ion batteries. Adv. Energy Mater. 14(30), 2401493 (2024). https://doi.org/10.1002/aenm.202401493
- Q. Zong, Q. Wang, C. Liu, D. Tao, J. Wang et al., Potassium ammonium vanadate with rich oxygen vacancies for fast and highly stable Zn-ion storage. ACS Nano 16(3), 4588–4598 (2022). https://doi.org/10.1021/acsnano.1c11169
- K. Wang, S. Li, X. Chen, J. Shen, H. Zhao et al., Trifunctional Rb+-intercalation enhancing the electrochemical cyclability of ammonium vanadate cathode for aqueous zinc ion batteries. ACS Nano 18(9), 7311–7323 (2024). https://doi.org/10.1021/acsnano.4c00803
- Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
- T. He, S. Weng, Y. Ye, J. Cheng, X. Wang et al., Cation- deficient Zn0.3(NH4)0.3V4O10•0.91H2O for rechargeable aqueous zinc battery with superior low- temperature performance. Energy Storage Mater. 38, 389–396 (2021). https://doi.org/10.1016/j.ensm.2021.03.025
- X. Wang, Y. Wang, A. Naveed, G. Li, H. Zhang et al., Magnesium ion doping and micro-structural engineering assist NH4V4O10 as a high-performance aqueous zinc ion battery cathode. Adv. Funct. Mater. 33(48), 2306205 (2023). https://doi.org/10.1002/adfm.202306205
- X. Wang, A. Naveed, T. Zeng, T. Wan, H. Zhang et al., Sodium ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode. Chem. Eng. J. 446, 137090 (2022). https://doi.org/10.1016/j.cej.2022.137090
- D. He, Y. Peng, Y. Ding, X. Xu, Y. Huang et al., Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. J. Power. Sources 484, 229284 (2021). https://doi.org/10.1016/j.jpowsour.2020.229284
- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
- G. Zhang, T. Wu, H. Zhou, H. Jin, K. Liu et al., Rich alkali ions preintercalated vanadium oxides for durable and fast zinc-ion storage. ACS Energy Lett. 6(6), 2111–2120 (2021). https://doi.org/10.1021/acsenergylett.1c00625
- Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu et al., Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 13(31), 2301480 (2023). https://doi.org/10.1002/aenm.202301480
- S. Zhao, S. Wang, J. Guo, L. Li, C. Li et al., Sodium-ion and polyaniline co-intercalation into ammonium vanadate nanoarrays induced enlarged interlayer spacing as high-capacity and stable cathodes for flexible aqueous zinc-ion batteries. Adv. Funct. Mater. 33(48), 2305700 (2023). https://doi.org/10.1002/adfm.202305700
- X. Xiao, T. Wang, Y. Zhao, W. Gao, S. Wang, A design of MnO-CNT@C3N4 cathodes for high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 642, 340–350 (2023). https://doi.org/10.1016/j.jcis.2023.03.164
- S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
- K. Fang, Y.-L. Liu, P. Chen, H. Zhang, D. Fang et al., Electrochemical activation strategy enabled ammonium vanadate cathodes for all-climate zinc-ion batteries. Nano Energy 114, 108671 (2023). https://doi.org/10.1016/j.nanoen.2023.108671
- S. Li, X. Xu, W. Chen, J. Zhao, K. Wang et al., Synergetic impact of oxygen and vanadium defects endows NH4V4O10 cathode with superior performances for aqueous zinc-ion battery. Energy Storage Mater. 65, 103108 (2024). https://doi.org/10.1016/j.ensm.2023.103108
- Y. Xu, G. Fan, P.X. Sun, Y. Guo, Y. Wang et al., Carbon nitride pillared vanadate via chemical pre-intercalation towards high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(26), e202303529 (2023). https://doi.org/10.1002/anie.202303529
- J. Yang, S. Xing, J. Zhou, Y. Cheng, L. Shi et al., The controlled construction of a ternary hybrid of monodisperse Ni3S4 nanorods/graphitic C3N4 nanosheets/nitrogen-doped graphene in van der Waals heterojunctions as a highly efficient electrocatalyst for overall water splitting and a promising anode material for sodium-ion batteries. J. Mater. Chem. A 7(8), 3714–3728 (2019). https://doi.org/10.1039/C8TA07253A
- Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang et al., Revealing Li-ion diffusion kinetic limitations in micron-sized Li-rich layered oxides. Energy Storage Mater. 53, 763–773 (2022). https://doi.org/10.1016/j.ensm.2022.10.008
- J. Wu, F. Faiz, M. Ahmad, Z. Miao, Z. Qiang et al., Tailoring MnO2 nanowire defects with K-doping for enhanced electrochemical energy storage in aqueous supercapacitors. Appl. Surf. Sci. 681, 161592 (2025). https://doi.org/10.1016/j.apsusc.2024.161592
- Y. Qiu, Z. Sun, Z. Guo, J. Bi, G. Li et al., Oxygen-deficient NH4V4O10 cathode with Ag quantum dots and interlayer Ag+ towards high-performance aqueous zinc ion batteries. Chem. Eng. J. 498, 155765 (2024). https://doi.org/10.1016/j.cej.2024.155765
- Y. Ma, D. He, Q. Liu, S. Le, X. Wang, A S-type 2D/2D heterojunction via intercalating ultrathin g-C3N4 into NH4V4O10 nanosheets and the boosted removal of ciprofloxacin. Appl. Catal. B Environ. 344, 123642 (2024). https://doi.org/10.1016/j.apcatb.2023.123642
- S. Li, D. Yu, J. Liu, N. Chen, Z. Shen et al., Quantitative regulation of interlayer space of NH4V4O10 for fast and durable Zn2+ and NH4+ storage. Adv. Sci. 10(9), 2206836 (2023). https://doi.org/10.1002/advs.202206836
- Z. Chen, Z. Yu, L. Wang, Y. Huang, H. Huang et al., Oxygen defect engineering toward zero-strain V2O2.8@porous reticular carbon for ultrastable potassium storage. ACS Nano 17(17), 16478–16490 (2023). https://doi.org/10.1021/acsnano.3c00706
- J. Zhang, R. Liu, C. Huang, C. Dong, L. Xu et al., Oxygen defect engineering and amphipathic molecules intercalation co-boosting fast kinetics and stable structure of S-doped (NH4)2V10O25∙8H2O free-standing cathode for aqueous Zn-ion storage. Nano Energy 122, 109301 (2024). https://doi.org/10.1016/j.nanoen.2024.109301
- J. Lin, Y. Wang, M. Chen, J. Lu, H. Mi et al., Regulating the Gibbs free energy to design aqueous battery-compatible robust host. Adv. Energy Mater. 14(31), 2470129 (2024). https://doi.org/10.1002/aenm.202470129
- Y. Peng, L.-E. Mo, T. Wei, Y. Wang, X. Zhang et al., Oxygen vacancies on NH4V4O10 accelerate ion and charge transfer in aqueous zinc-ion batteries. Small 20(11), e2306972 (2024). https://doi.org/10.1002/smll.202306972
- F. Cui, D. Wang, F. Hu, X. Yu, C. Guan et al., Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater. 44, 197–205 (2022). https://doi.org/10.1016/j.ensm.2021.10.001
- A. Wang, D.-H. Liu, L. Yang, F. Xu, D. Luo et al., Building stabilized Cu0.17Mn0.03V2O5− ·2.16H2O cathode enables an outstanding room-/ low-temperature aqueous Zn-ion batteries. Carbon Energy 6(8), e512 (2024). https://doi.org/10.1002/cey2.512
- J. Huang, H. Liang, Y. Tang, B. Lu, J. Zhou et al., In situ induced coordination between a “desiccant” interphase and oxygen-deficient navajoite towards highly efficient zinc ion storage. Adv. Energy Mater. 12(35), 2201434 (2022). https://doi.org/10.1002/aenm.202201434
- X. Jia, C. Liu, Z. Wang, D. Huang, G. Cao, Weakly polarized organic cation-modified hydrated vanadium oxides for high-energy efficiency aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 129 (2024). https://doi.org/10.1007/s40820-024-01339-y
- J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33(46), 2305659 (2023). https://doi.org/10.1002/adfm.202305659
- S. Chen, K. Li, K.S. Hui, J. Zhang, Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery. Adv. Funct. Mater. 30(43), 2003890 (2020). https://doi.org/10.1002/adfm.202003890
- M. Yang, Y. Wang, D. Ma, J. Zhu, H. Mi et al., Unlocking the interfacial adsorption-intercalation pseudocapacitive storage limit to enabling all-climate, high energy/power density and durable Zn-ion batteries. Angew. Chem. Int. Ed. 62(27), e202304400 (2023). https://doi.org/10.1002/anie.202304400
- S. Wang, Z. Yuan, X. Zhang, S. Bi, Z. Zhou et al., Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries. Angew. Chem. Int. Ed. 60(13), 7056–7060 (2021). https://doi.org/10.1002/anie.202017098
- S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32(26), 2001113 (2020). https://doi.org/10.1002/adma.202001113
- S. Kong, Y. Li, X. Zhang, Z. Xu, X. Wang et al., Anchoring polar organic molecules in defective ammonium vanadate for high-performance flexible aqueous zinc-ion battery. Small 19(52), 2304462 (2023). https://doi.org/10.1002/smll.202304462
- J. Yang, X. Xiao, W. Gong, L. Zhao, G. Li et al., Size-independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-ion batteries. Angew. Chem. Int. Ed. 58(26), 8740–8745 (2019). https://doi.org/10.1002/anie.201902478
- D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6(4), 968–984 (2020). https://doi.org/10.1016/j.chempr.2020.02.001
- Z. Cao, J. Fu, M. Wu, T. Hua, H. Hu, Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater. 40, 10–21 (2021). https://doi.org/10.1016/j.ensm.2021.04.047
- L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5(10), eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279
- Y. Zhao, X. Xia, Q. Li, Y. Wang, Y. Fan et al., Activating the redox chemistry of MnO2/Mn2+ in aqueous Zn batteries based on multi-ions doping regulation. Energy Storage Mater. 67, 103268 (2024). https://doi.org/10.1016/j.ensm.2024.103268
- M. Zhang, X. Zhang, Q. Dong, S. Zhang, Z. Xu et al., Organic molecular intercalated V3O7·H2O with high operating voltage for long cycle life aqueous Zn-ion batteries. Adv. Funct. Mater. 33(31), 2213187 (2023). https://doi.org/10.1002/adfm.202213187
- Y. Liu, Y. Sun, J. Zhang, X. Hao, M. Zhang et al., Electrochemically inducing V2O5·nH2O nanoarrays vertically growth on VSx microrods for highly stable zinc ion battery cathode. Nano Energy 120, 109152 (2024). https://doi.org/10.1016/j.nanoen.2023.109152
- C. Li, X. Yun, Y. Chen, D. Lu, Z. Ma et al., Unravelling the proton hysteresis mechanism in vacancy modified vanadium oxides for high-performance aqueous zinc ion battery. Chem. Eng. J. 477, 146901 (2023). https://doi.org/10.1016/j.cej.2023.146901
- C. Lin, L. He, P. Xiong, H. Lin, W. Lai et al., Adaptive ionization-induced tunable electric double layer for practical Zn metal batteries over wide pH and temperature ranges. ACS Nano 17(22), 23181–23193 (2023). https://doi.org/10.1021/acsnano.3c09774
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), e2207344 (2022). https://doi.org/10.1002/adma.202207344
- X. Jin, L. Song, C. Dai, H. Ma, Y. Xiao et al., A self-healing zinc ion battery under-20 ℃. Energy Storage Mater. 44, 517–526 (2022). https://doi.org/10.1016/j.ensm.2021.11.004
- S. Huang, S. He, Y. Li, S. Wang, X. Hou, Hydrogen bond acceptor lined hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with low temperature adaptability. Chem. Eng. J. 464, 142607 (2023). https://doi.org/10.1016/j.cej.2023.142607
- J. Zhang, C. Lin, L. Zeng, H. Lin, L. He et al., A hydrogel electrolyte with high adaptability over a wide temperature range and mechanical stress for long-life flexible zinc-ion batteries. Small 20(30), 2312116 (2024). https://doi.org/10.1002/smll.202312116
- H. Jia, Y. Li, L. Fu, U. Ali, B. Liu et al., Ion pre-embedding engineering of δ-MnO2 for chemically self-charging aqueous zinc ions batteries. Small 19(46), e2303593 (2023). https://doi.org/10.1002/smll.202303593
- Y. Zhao, Y. Zhu, F. Jiang, Y. Li, Y. Meng et al., Vacancy modulating Co3Sn2S2 topological semimetal for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(2), e202111826 (2022). https://doi.org/10.1002/anie.202111826
- H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang et al., Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 30(6), 1907684 (2020). https://doi.org/10.1002/adfm.201907684
- C. Liu, W. Xu, C. Mei, M.-C. Li, X. Xu et al., Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem. Eng. J. 405, 126737 (2021). https://doi.org/10.1016/j.cej.2020.126737
- Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at −70 ℃. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
- G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), e2400370 (2024). https://doi.org/10.1002/adma.202400370
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
References
Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
J. Heo, D. Dong, Z. Wang, F. Chen, C. Wang, Electrolyte design for aqueous Zn batteries. Joule 9(4), 101844 (2025). https://doi.org/10.1016/j.joule.2025.101844
L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
R. Sinha, X. Xie, Y. Yang, Y. Li, Y. Xue et al., Failure mechanisms and strategies for vanadium oxide-based cathode in aqueous zinc batteries. Adv. Energy Mater. 15(14), 2404815 (2025). https://doi.org/10.1002/aenm.202404815
L. Zhang, Y. Han, Y. Geng, H. Zhang, H. Liu et al., Aqueous zinc-ion batteries with boosted stability and kinetics under a wide temperature range. Angew. Chem. Int. Ed. 64(20), e202500434 (2025). https://doi.org/10.1002/anie.202500434
Z. Shen, Z. Zhai, Y. Liu, X. Bao, Y. Zhu et al., Hydrogel electrolytes-based rechargeable zinc-ion batteries under harsh conditions. Nano-Micro Lett. 17(1), 227 (2025). https://doi.org/10.1007/s40820-025-01727-y
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
H. Niu, H. Liu, L. Yang, T. Kang, T. Shen et al., Impacts of distorted local chemical coordination on electrochemical performance in hydrated vanadium pentoxide. Nat. Commun. 15(1), 9421 (2024). https://doi.org/10.1038/s41467-024-53785-2
M. Wu, C. Shi, J. Yang, Y. Zong, Y. Chen et al., The LiV3O8 superlattice cathode with optimized zinc ion insertion chemistry for high mass-loading aqueous zinc-ion batteries. Adv. Mater. 36(23), e2310434 (2024). https://doi.org/10.1002/adma.202310434
Y. Zeng, X.F. Lu, S.L. Zhang, D. Luan, S. Li et al., Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 60(41), 22189–22194 (2021). https://doi.org/10.1002/anie.202107697
Z. Sang, J. Liu, X. Zhang, L. Yin, F. Hou et al., One-dimensional π-d conjugated conductive metal-organic framework with dual redox-active sites for high-capacity and durable cathodes for aqueous zinc batteries. ACS Nano 17(3), 3077–3087 (2023). https://doi.org/10.1021/acsnano.2c11974
D. Chen, M. Yang, Y. Ming, W. Cai, S. Shi et al., Synergetic effect of Mo-doped and oxygen vacancies endows vanadium oxide with high-rate and long-life for aqueous zinc ion battery. Small 20(48), 2405168 (2024). https://doi.org/10.1002/smll.202405168
W. Lv, Z. Shen, X. Li, J. Meng, W. Yang et al., Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: an integrating biomass carbon strategy. Nano-Micro Lett. 16(1), 109 (2024). https://doi.org/10.1007/s40820-024-01334-3
P. Zhang, Y. Gong, S. Fan, Z. Luo, J. Hu et al., Glutamic acid induced proton substitution of sodium vanadate cathode promotes high performance in aqueous zinc-ion batteries. Adv. Energy Mater. 14(30), 2401493 (2024). https://doi.org/10.1002/aenm.202401493
Q. Zong, Q. Wang, C. Liu, D. Tao, J. Wang et al., Potassium ammonium vanadate with rich oxygen vacancies for fast and highly stable Zn-ion storage. ACS Nano 16(3), 4588–4598 (2022). https://doi.org/10.1021/acsnano.1c11169
K. Wang, S. Li, X. Chen, J. Shen, H. Zhao et al., Trifunctional Rb+-intercalation enhancing the electrochemical cyclability of ammonium vanadate cathode for aqueous zinc ion batteries. ACS Nano 18(9), 7311–7323 (2024). https://doi.org/10.1021/acsnano.4c00803
Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang et al., Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 116 (2021). https://doi.org/10.1007/s40820-021-00641-3
T. He, S. Weng, Y. Ye, J. Cheng, X. Wang et al., Cation- deficient Zn0.3(NH4)0.3V4O10•0.91H2O for rechargeable aqueous zinc battery with superior low- temperature performance. Energy Storage Mater. 38, 389–396 (2021). https://doi.org/10.1016/j.ensm.2021.03.025
X. Wang, Y. Wang, A. Naveed, G. Li, H. Zhang et al., Magnesium ion doping and micro-structural engineering assist NH4V4O10 as a high-performance aqueous zinc ion battery cathode. Adv. Funct. Mater. 33(48), 2306205 (2023). https://doi.org/10.1002/adfm.202306205
X. Wang, A. Naveed, T. Zeng, T. Wan, H. Zhang et al., Sodium ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode. Chem. Eng. J. 446, 137090 (2022). https://doi.org/10.1016/j.cej.2022.137090
D. He, Y. Peng, Y. Ding, X. Xu, Y. Huang et al., Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. J. Power. Sources 484, 229284 (2021). https://doi.org/10.1016/j.jpowsour.2020.229284
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12(7), 2273–2285 (2019). https://doi.org/10.1039/c9ee00956f
G. Zhang, T. Wu, H. Zhou, H. Jin, K. Liu et al., Rich alkali ions preintercalated vanadium oxides for durable and fast zinc-ion storage. ACS Energy Lett. 6(6), 2111–2120 (2021). https://doi.org/10.1021/acsenergylett.1c00625
Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu et al., Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 13(31), 2301480 (2023). https://doi.org/10.1002/aenm.202301480
S. Zhao, S. Wang, J. Guo, L. Li, C. Li et al., Sodium-ion and polyaniline co-intercalation into ammonium vanadate nanoarrays induced enlarged interlayer spacing as high-capacity and stable cathodes for flexible aqueous zinc-ion batteries. Adv. Funct. Mater. 33(48), 2305700 (2023). https://doi.org/10.1002/adfm.202305700
X. Xiao, T. Wang, Y. Zhao, W. Gao, S. Wang, A design of MnO-CNT@C3N4 cathodes for high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 642, 340–350 (2023). https://doi.org/10.1016/j.jcis.2023.03.164
S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
K. Fang, Y.-L. Liu, P. Chen, H. Zhang, D. Fang et al., Electrochemical activation strategy enabled ammonium vanadate cathodes for all-climate zinc-ion batteries. Nano Energy 114, 108671 (2023). https://doi.org/10.1016/j.nanoen.2023.108671
S. Li, X. Xu, W. Chen, J. Zhao, K. Wang et al., Synergetic impact of oxygen and vanadium defects endows NH4V4O10 cathode with superior performances for aqueous zinc-ion battery. Energy Storage Mater. 65, 103108 (2024). https://doi.org/10.1016/j.ensm.2023.103108
Y. Xu, G. Fan, P.X. Sun, Y. Guo, Y. Wang et al., Carbon nitride pillared vanadate via chemical pre-intercalation towards high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(26), e202303529 (2023). https://doi.org/10.1002/anie.202303529
J. Yang, S. Xing, J. Zhou, Y. Cheng, L. Shi et al., The controlled construction of a ternary hybrid of monodisperse Ni3S4 nanorods/graphitic C3N4 nanosheets/nitrogen-doped graphene in van der Waals heterojunctions as a highly efficient electrocatalyst for overall water splitting and a promising anode material for sodium-ion batteries. J. Mater. Chem. A 7(8), 3714–3728 (2019). https://doi.org/10.1039/C8TA07253A
Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang et al., Revealing Li-ion diffusion kinetic limitations in micron-sized Li-rich layered oxides. Energy Storage Mater. 53, 763–773 (2022). https://doi.org/10.1016/j.ensm.2022.10.008
J. Wu, F. Faiz, M. Ahmad, Z. Miao, Z. Qiang et al., Tailoring MnO2 nanowire defects with K-doping for enhanced electrochemical energy storage in aqueous supercapacitors. Appl. Surf. Sci. 681, 161592 (2025). https://doi.org/10.1016/j.apsusc.2024.161592
Y. Qiu, Z. Sun, Z. Guo, J. Bi, G. Li et al., Oxygen-deficient NH4V4O10 cathode with Ag quantum dots and interlayer Ag+ towards high-performance aqueous zinc ion batteries. Chem. Eng. J. 498, 155765 (2024). https://doi.org/10.1016/j.cej.2024.155765
Y. Ma, D. He, Q. Liu, S. Le, X. Wang, A S-type 2D/2D heterojunction via intercalating ultrathin g-C3N4 into NH4V4O10 nanosheets and the boosted removal of ciprofloxacin. Appl. Catal. B Environ. 344, 123642 (2024). https://doi.org/10.1016/j.apcatb.2023.123642
S. Li, D. Yu, J. Liu, N. Chen, Z. Shen et al., Quantitative regulation of interlayer space of NH4V4O10 for fast and durable Zn2+ and NH4+ storage. Adv. Sci. 10(9), 2206836 (2023). https://doi.org/10.1002/advs.202206836
Z. Chen, Z. Yu, L. Wang, Y. Huang, H. Huang et al., Oxygen defect engineering toward zero-strain V2O2.8@porous reticular carbon for ultrastable potassium storage. ACS Nano 17(17), 16478–16490 (2023). https://doi.org/10.1021/acsnano.3c00706
J. Zhang, R. Liu, C. Huang, C. Dong, L. Xu et al., Oxygen defect engineering and amphipathic molecules intercalation co-boosting fast kinetics and stable structure of S-doped (NH4)2V10O25∙8H2O free-standing cathode for aqueous Zn-ion storage. Nano Energy 122, 109301 (2024). https://doi.org/10.1016/j.nanoen.2024.109301
J. Lin, Y. Wang, M. Chen, J. Lu, H. Mi et al., Regulating the Gibbs free energy to design aqueous battery-compatible robust host. Adv. Energy Mater. 14(31), 2470129 (2024). https://doi.org/10.1002/aenm.202470129
Y. Peng, L.-E. Mo, T. Wei, Y. Wang, X. Zhang et al., Oxygen vacancies on NH4V4O10 accelerate ion and charge transfer in aqueous zinc-ion batteries. Small 20(11), e2306972 (2024). https://doi.org/10.1002/smll.202306972
F. Cui, D. Wang, F. Hu, X. Yu, C. Guan et al., Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater. 44, 197–205 (2022). https://doi.org/10.1016/j.ensm.2021.10.001
A. Wang, D.-H. Liu, L. Yang, F. Xu, D. Luo et al., Building stabilized Cu0.17Mn0.03V2O5− ·2.16H2O cathode enables an outstanding room-/ low-temperature aqueous Zn-ion batteries. Carbon Energy 6(8), e512 (2024). https://doi.org/10.1002/cey2.512
J. Huang, H. Liang, Y. Tang, B. Lu, J. Zhou et al., In situ induced coordination between a “desiccant” interphase and oxygen-deficient navajoite towards highly efficient zinc ion storage. Adv. Energy Mater. 12(35), 2201434 (2022). https://doi.org/10.1002/aenm.202201434
X. Jia, C. Liu, Z. Wang, D. Huang, G. Cao, Weakly polarized organic cation-modified hydrated vanadium oxides for high-energy efficiency aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 129 (2024). https://doi.org/10.1007/s40820-024-01339-y
J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33(46), 2305659 (2023). https://doi.org/10.1002/adfm.202305659
S. Chen, K. Li, K.S. Hui, J. Zhang, Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery. Adv. Funct. Mater. 30(43), 2003890 (2020). https://doi.org/10.1002/adfm.202003890
M. Yang, Y. Wang, D. Ma, J. Zhu, H. Mi et al., Unlocking the interfacial adsorption-intercalation pseudocapacitive storage limit to enabling all-climate, high energy/power density and durable Zn-ion batteries. Angew. Chem. Int. Ed. 62(27), e202304400 (2023). https://doi.org/10.1002/anie.202304400
S. Wang, Z. Yuan, X. Zhang, S. Bi, Z. Zhou et al., Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries. Angew. Chem. Int. Ed. 60(13), 7056–7060 (2021). https://doi.org/10.1002/anie.202017098
S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32(26), 2001113 (2020). https://doi.org/10.1002/adma.202001113
S. Kong, Y. Li, X. Zhang, Z. Xu, X. Wang et al., Anchoring polar organic molecules in defective ammonium vanadate for high-performance flexible aqueous zinc-ion battery. Small 19(52), 2304462 (2023). https://doi.org/10.1002/smll.202304462
J. Yang, X. Xiao, W. Gong, L. Zhao, G. Li et al., Size-independent fast ion intercalation in two-dimensional titania nanosheets for alkali-metal-ion batteries. Angew. Chem. Int. Ed. 58(26), 8740–8745 (2019). https://doi.org/10.1002/anie.201902478
D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu et al., Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 6(4), 968–984 (2020). https://doi.org/10.1016/j.chempr.2020.02.001
Z. Cao, J. Fu, M. Wu, T. Hua, H. Hu, Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater. 40, 10–21 (2021). https://doi.org/10.1016/j.ensm.2021.04.047
L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5(10), eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279
Y. Zhao, X. Xia, Q. Li, Y. Wang, Y. Fan et al., Activating the redox chemistry of MnO2/Mn2+ in aqueous Zn batteries based on multi-ions doping regulation. Energy Storage Mater. 67, 103268 (2024). https://doi.org/10.1016/j.ensm.2024.103268
M. Zhang, X. Zhang, Q. Dong, S. Zhang, Z. Xu et al., Organic molecular intercalated V3O7·H2O with high operating voltage for long cycle life aqueous Zn-ion batteries. Adv. Funct. Mater. 33(31), 2213187 (2023). https://doi.org/10.1002/adfm.202213187
Y. Liu, Y. Sun, J. Zhang, X. Hao, M. Zhang et al., Electrochemically inducing V2O5·nH2O nanoarrays vertically growth on VSx microrods for highly stable zinc ion battery cathode. Nano Energy 120, 109152 (2024). https://doi.org/10.1016/j.nanoen.2023.109152
C. Li, X. Yun, Y. Chen, D. Lu, Z. Ma et al., Unravelling the proton hysteresis mechanism in vacancy modified vanadium oxides for high-performance aqueous zinc ion battery. Chem. Eng. J. 477, 146901 (2023). https://doi.org/10.1016/j.cej.2023.146901
C. Lin, L. He, P. Xiong, H. Lin, W. Lai et al., Adaptive ionization-induced tunable electric double layer for practical Zn metal batteries over wide pH and temperature ranges. ACS Nano 17(22), 23181–23193 (2023). https://doi.org/10.1021/acsnano.3c09774
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), e2207344 (2022). https://doi.org/10.1002/adma.202207344
X. Jin, L. Song, C. Dai, H. Ma, Y. Xiao et al., A self-healing zinc ion battery under-20 ℃. Energy Storage Mater. 44, 517–526 (2022). https://doi.org/10.1016/j.ensm.2021.11.004
S. Huang, S. He, Y. Li, S. Wang, X. Hou, Hydrogen bond acceptor lined hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with low temperature adaptability. Chem. Eng. J. 464, 142607 (2023). https://doi.org/10.1016/j.cej.2023.142607
J. Zhang, C. Lin, L. Zeng, H. Lin, L. He et al., A hydrogel electrolyte with high adaptability over a wide temperature range and mechanical stress for long-life flexible zinc-ion batteries. Small 20(30), 2312116 (2024). https://doi.org/10.1002/smll.202312116
H. Jia, Y. Li, L. Fu, U. Ali, B. Liu et al., Ion pre-embedding engineering of δ-MnO2 for chemically self-charging aqueous zinc ions batteries. Small 19(46), e2303593 (2023). https://doi.org/10.1002/smll.202303593
Y. Zhao, Y. Zhu, F. Jiang, Y. Li, Y. Meng et al., Vacancy modulating Co3Sn2S2 topological semimetal for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(2), e202111826 (2022). https://doi.org/10.1002/anie.202111826
H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang et al., Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 30(6), 1907684 (2020). https://doi.org/10.1002/adfm.201907684
C. Liu, W. Xu, C. Mei, M.-C. Li, X. Xu et al., Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chem. Eng. J. 405, 126737 (2021). https://doi.org/10.1016/j.cej.2020.126737
Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at −70 ℃. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), e2400370 (2024). https://doi.org/10.1002/adma.202400370
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0