High-Strength 3D-Ordered Ceramic-Gel Composite Electrolytes Enable Highly Stable Sodium Metal Batteries at − 20 to 60 °C
Corresponding Author: Qiang Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 195
Abstract
Ceramic-gel composite electrolytes (CGEs) attract significant attention as solid-state electrolytes (SSEs) for sodium metal batteries owing to their favorable ionic conductivity and interfacial compatibility. However, conventional CGEs generally feature insufficient mechanical strength and consequent uncontrollable dendrite growth, remaining long-standing fundamental challenges that severely limit practical applications. Herein, this study presents a high-strength CGE that enables efficient stress transfer, achieving a compressive strength of 20.1 MPa (20 times higher than conventional gel electrolytes), while maintaining excellent ionic conductivity and effectively suppressing sodium dendrites. The 3D-Na3Zr2Si2PO12 framework further serves as a thermal barrier, imparting the CGE with superior flame retardancy. Additionally, Na/CGE/NVP-K0.05 cells exhibit 75.9% capacity retention after 10,000 cycles at 5C (25 °C) and deliver 78.5 mAh g−1 at 30C (60 °C). Remarkably, the CGE exhibits excellent low-temperature adaptability, retaining nearly 100% capacity at –20 °C. These results highlight a viable strategy for designing safe and high-performance solid-state sodium metal batteries toward practical deployment.
Highlights:
1 A high-strength ceramic-gel electrolyte enables efficient stress transfer, achieving a compressive strength of 20.1 MPa (20 times that of conventional gel electrolytes) while maintaining excellent ionic conductivity and effectively suppressing sodium dendrite growth.
2 The Na3Zr2Si2PO12 framework acts as a thermal barrier, imparting the ceramic-gel composite electrolytes with superior flame retardancy and maintaining structural integrity after 30 s of burning.
3 The structural–functional integration ensures efficient Na⁺ conduction (3.37 × 10−3 S cm−1) and stable performance from − 20 to 60 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe et al., Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 30(29), 1801334 (2018). https://doi.org/10.1002/adma.201801334
- Y.-X. Wang, J. Yang, W. Lai, S.-L. Chou, Q.-F. Gu et al., Achieving high-performance room-temperature sodium–sulfur batteries with S@Interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 138(51), 16576–16579 (2016). https://doi.org/10.1016/j.jcis.2021.07.114
- I. Landa-Medrano, C. Li, N. Ortiz-Vitoriano, I. Ruiz de Larramendi, J. Carrasco et al., Sodium-oxygen battery: steps toward reality. J. Phys. Chem. Lett. 7(7), 1161–1166 (2016). https://doi.org/10.1021/acs.jpclett.5b02845
- S. Zhao, F. Ning, X. Yu, B. Guo, R.F. Teófilo et al., Inhomogeneous coordination in high-entropy O3-Type cathodes enables suppressed slab gliding and durable sodium storage. Angew. Chem. Int. Ed. 64(4), e202416290 (2025). https://doi.org/10.1002/anie.202416290
- R. Wang, W. Feng, X. Yu, Q. Shi, P. Wang et al., Stable zero-sodium-excess solid-state batteries enabled by interphase stratification. eScience 4(6), 100274 (2024). https://doi.org/10.1016/j.esci.2024.100274
- H. Fang, Y. Huang, W. Hu, Z. Song, X. Wei et al., Regulating ion-dipole interactions in weakly solvating electrolyte towards ultra-low temperature sodium-ion batteries. Angew. Chem. Int. Ed. 63(15), e202400539 (2024). https://doi.org/10.1002/anie.202400539
- S. Gao, Z. Zhu, H. Fang, K. Feng, J. Zhong et al., Regulation of coordination chemistry for ultrastable layered oxide cathode materials of sodium-ion batteries. Adv. Mater. 36(16), 2311523 (2024). https://doi.org/10.1002/adma.202311523
- Y. Sun, R. Hou, S. Xu, H. Zhou, S. Guo, Molecular engineering enabling high initial coulombic efficiency and rubost solid electrolyte interphase for hard carbon in sodium-ion batteries. Angew. Chem. Int. Ed. 63(11), e202318960 (2024). https://doi.org/10.1002/anie.202318960
- B. Wang, J. Ma, K. Wang, D. Wang, G. Xu et al., High-entropy phase stabilization engineering enables high-performance layered cathode for sodium-ion batteries. Adv. Energy Mater. 14(23), 2401090 (2024). https://doi.org/10.1002/aenm.202401090
- F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang et al., Emerging chemistry for wide-temperature sodium-ion batteries. Chem. Rev. 124(8), 4778–4821 (2024). https://doi.org/10.1021/acs.chemrev.3c00728
- J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
- Z. Li, M. Han, J. Wang, L. Zhang, P. Yu et al., Superparamagnetic Fe conversion induces MoS2 fast ion transport in wide-temperature-range sodium-ion batteries. Adv. Funct. Mater. 34(41), 2404263 (2024). https://doi.org/10.1002/adfm.202404263
- S. Liu, L. Zhou, T. Zhong, X. Wu, K. Neyts, Sulfide/polymer composite solid-state electrolytes for all-solid-state lithium batteries. Adv. Energy Mater. 14(48), 2403602 (2024). https://doi.org/10.1002/aenm.202403602
- M. Ahuis, S. Doose, D. Vogt, P. Michalowski, S. Zellmer et al., Recycling of solid-state batteries. Nat. Energy 9(4), 373–385 (2024). https://doi.org/10.1038/s41560-024-01463-4
- P. Song, S. Chen, J. Guo, J. Wu, Q. Lu et al., Electrostatic regulation of Na+ coordination chemistry for high-performance all-solid-state sodium batteries. Nano-Micro Lett. 18(1), 72 (2025). https://doi.org/10.1007/s40820-025-01910-1
- X.X. Liu, L. Pan, H. Zhang, P. Yuan, M. Cao et al., Host-guest inversion engineering induced superionic composite solid electrolytes for high-rate solid-state alkali metal batteries. Nano-Micro Lett. 17(1), 190 (2025). https://doi.org/10.1007/s40820-025-01691-7
- Y. Wang, Z. Wang, X. Xu, S.J.A. Oh, J. Sun et al., Ultra-stable sodium-ion battery enabled by all-solid-state ferroelectric-engineered composite electrolytes. Nano-Micro Lett. 16(1), 254 (2024). https://doi.org/10.1007/s40820-024-01474-6
- A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through in situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16(1), 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
- Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
- X. Guo, Z. Xie, R. Wang, J. Luo, J. Chen et al., Interface-compatible gel-polymer electrolyte enabled by NaF-solubility-regulation toward all-climate solid-state sodium batteries. Angew. Chem. Int. Ed. 63(18), e202402245 (2024). https://doi.org/10.1002/anie.202402245
- D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
- C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
- X. Zhou, Y. Zhou, L. Yu, L. Qi, K.-S. Oh et al., Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53(10), 5291–5337 (2024). https://doi.org/10.1039/d3cs00551h
- Q. Zhang, T. Bian, Z. Liu, C. Wang, X. Song et al., Tertiary-amine based network polymer electrolyte for improving the cyclic stability of Na metal batteries with large capacity. Adv. Energy Mater. 14(16), 2303791 (2024). https://doi.org/10.1002/aenm.202303791
- S. Zhao, Y. Shen, H. Che, M. Jabeen, C. Lu et al., Cellulose derivative and polyionic liquid crosslinked network gel electrolytes for sodium metal quasi-solid-state batteries. Adv. Funct. Mater. 35(15), 2422162 (2025). https://doi.org/10.1002/adfm.202422162
- N. Varan, P. Merghes, N. Plesu, L. Macarie, G. Ilia et al., Phosphorus-containing polymer electrolytes for Li batteries. Batteries 10(2), 56 (2024). https://doi.org/10.3390/batteries10020056
- J.I. Kim, Y. Choi, K.Y. Chung, J.H. Park, A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 27(34), 1701768 (2017). https://doi.org/10.1002/adfm.201701768
- K.G. Khatmullina, N.A. Slesarenko, A.V. Chernyak, G.R. Baymuratova, A.V. Yudina et al., New network polymer electrolytes based on ionic liquid and SiO2 nanops for energy storage systems. Membranes 13(6), 548 (2023). https://doi.org/10.3390/membranes13060548
- D. Kumar, S.A. Hashmi, Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanops. J. Power. Sources 195(15), 5101–5108 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.026
- P. Wang, J. Tan, Z. Liu, C. Wang, C. Bao et al., Accelerated 3D percolation network for ultra-high critical current density of composite solid-state electrolyte. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202512441
- M. Das, N. Shukla, B. Boruah, A. Gogoi, L. Saikia et al., Cellulose acetate-based gel electrolytes grafted with surface-functionalized SiO2 nanofiber for green energy storing applications. Colloid. Surf. A Physicochem Eng. Asp. 686, 133268 (2024). https://doi.org/10.1016/j.colsurfa.2024.133268
- T. Zhang, J. Li, X. Li, R. Wang, C. Wang et al., A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv. Mater. 34(41), 2205575 (2022). https://doi.org/10.1002/adma.202205575
- X. Wu, X. Jie, X. Liang, L. Zhang, J. Wang et al., Polymer/ceramic gel electrolyte with in situ interface forming enhances the performance of lithium metal batteries. J. Energy Storage 78, 110107 (2024). https://doi.org/10.1016/j.est.2023.110107
- D. Lei, Y.-B. He, H. Huang, Y. Yuan, G. Zhong et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10(1), 4244 (2019). https://doi.org/10.1038/s41467-019-11960-w
- L. Shen, Y. Li, C. Hu, Z. Huang, B. Wang et al., A high-rate cathode material based on potassium-doped Na3V2(PO4)3 for high/low-temperature sodium-ion batteries. Mater. Today Chem. 30, 101506 (2023). https://doi.org/10.1016/j.mtchem.2023.101506
- P. Yang, X. Gao, X. Tian, C. Shu, Y. Yi et al., Upgrading traditional organic electrolytes toward future lithium metal batteries: a hierarchical nano-SiO2-supported gel polymer electrolyte. ACS Energy Lett. 5(5), 1681–1688 (2020). https://doi.org/10.1021/acsenergylett.0c00412
- H. Lai, Y. Lu, W. Zha, Y. Hu, Y. Zhang et al., In situ generated composite gel polymer electrolyte with crosslinking structure for dendrite-free and high-performance sodium metal batteries. Energy Storage Mater. 54, 478–487 (2023). https://doi.org/10.1016/j.ensm.2022.10.032
- X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021). https://doi.org/10.1016/j.ensm.2020.10.006
- Y. Wang, J. Qiu, J. Peng, J. Li, M. Zhai, One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J. Mater. Chem. A 5(24), 12393–12399 (2017). https://doi.org/10.1039/c7ta02291c
- Q. Su, S. Huang, J. Liao, D. Song, W. Yuan et al., A flame retardant and flexible gel polymer electrolytes for high temperature lithium metal batteries. J. Electroanal. Chem. 945, 117712 (2023). https://doi.org/10.1016/j.jelechem.2023.117712
- G. Chen, K. Zhang, Y. Liu, L. Ye, Y. Gao et al., Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chem. Eng. J. 401, 126065 (2020). https://doi.org/10.1016/j.cej.2020.126065
- W. Yan, J. Wei, T. Chen, L. Duan, L. Wang et al., Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 80, 105510 (2021). https://doi.org/10.1016/j.nanoen.2020.105510
- Y. Wang, Z. Wei, T. Ji, R. Bai, H. Zhu, Highly ionic conductive, stretchable, and tough ionogel for flexible solid-state supercapacitor. Small 20(20), 2307019 (2024). https://doi.org/10.1002/smll.202307019
- X. Deng, J. Chen, X. Jia, X. Da, Y. Zhao et al., Highly tough slide-crosslinked gel polymer electrolyte for stable lithium metal batteries. Angew. Chem. Int. Ed. 63(43), e202410818 (2024). https://doi.org/10.1002/anie.202410818
- J. Zhang, H. Wen, L. Yue, J. Chai, J. Ma et al., In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries. Small 13(2), 1601530 (2017). https://doi.org/10.1002/smll.201601530
- M.L. Lehmann, G. Yang, D. Gilmer, K.S. Han, E.C. Self et al., Tailored crosslinking of Poly(ethylene oxide) enables mechanical robustness and improved sodium-ion conductivity. Energy Storage Mater. 21, 85–96 (2019). https://doi.org/10.1016/j.ensm.2019.06.028
- Y. Zhu, Y. Yang, L. Fu, Y. Wu, A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochim. Acta 224, 405–411 (2017). https://doi.org/10.1016/j.electacta.2016.12.030
- C. Lu, X. Chen, In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chem. Commun. 55(58), 8470–8473 (2019). https://doi.org/10.1039/c9cc03401c
- Y. Cui, P. Zhang, Y. Tian, C. Wang, S. Wang et al., A robust 3D nanostructured composite polymer electrolyte with novel dual-ion channels toward solid-state sodium metal batteries. Chem. Eng. J. 498, 155375 (2024). https://doi.org/10.1016/j.cej.2024.155375
- X. Wang, X. Wang, J. Chen, Y. Zhao, Z. Mao et al., Durable sodium battery composed of conductive Ti3C2Tx MXene modified gel polymer electrolyte. Solid State Ionics 365, 115655 (2021). https://doi.org/10.1016/j.ssi.2021.115655
- A.P. Vijaya Kumar Saroja, A.K. R, B.C. Moharana, K. M, R. S, Design of porous calcium phosphate based gel polymer electrolyte for Quasi-solid state sodium ion battery. J. Electroanal. Chem. 859, 113864 (2020). https://doi.org/10.1016/j.jelechem.2020.113864
- W. Zhang, J. Zhang, X. Liu, H. Li, Y. Guo et al., In-situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na+ solvation structure for sodium metal batteries. Adv. Funct. Mater. 32(25), 2201205 (2022). https://doi.org/10.1002/adfm.202201205
- C. Luo, T. Shen, H. Ji, D. Huang, J. Liu et al., Mechanically robust gel polymer electrolyte for an ultrastable sodium metal battery. Small 16(2), 1906208 (2020). https://doi.org/10.1002/smll.201906208
- L. Ma, X. Li, J. Tan, Z. Fang, Z. Liu et al., Anion-immobilized gel polymer electrolyte with a high ion transference number for high-performance lithium/sodium metal batteries. ACS Appl. Mater. Interfaces 15(49), 57201–57210 (2023). https://doi.org/10.1021/acsami.3c13883
- C. Chen, Y. Li, C. Wang, H. He, M. Liu et al., A composite gel polymer electrolyte for sodium metal battery at a wide temperature range. Battery Energy 3(2), 20230048 (2024). https://doi.org/10.1002/bte2.20230048
- P. Wen, P. Lu, X. Shi, Y. Yao, H. Shi et al., Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv. Energy Mater. 11(6), 2002930 (2021). https://doi.org/10.1002/aenm.202002930
- M. Yang, F. Feng, Y. Ren, S. Chen, F. Chen et al., Coupling anion-capturer with polymer chains in fireproof gel polymer electrolyte enables dendrite-free sodium metal batteries. Adv. Funct. Mater. 33(46), 2305383 (2023). https://doi.org/10.1002/adfm.202305383
- Y. Zhang, H. Lai, X. Wu, Z. Wen, A gel polymer electrolyte with high uniform Na+ flux and its constructed hybrid interface synergistically to facilitate high-performance sodium batteries. Small Methods 8(12), 2400280 (2024). https://doi.org/10.1002/smtd.202400280
- M. Yang, F. Feng, J. Guo, R. Wang, J. Yu et al., Anion trapping-coupling strategy driven asymmetric nonflammable gel electrolyte for high performance sodium batteries. Energy Storage Mater. 70, 103492 (2024). https://doi.org/10.1016/j.ensm.2024.103492
- M. Yang, F. Feng, Z. Shi, J. Guo, R. Wang et al., Facile design of asymmetric flame-retardant gel polymer electrolyte with excellent interfacial stability for sodium metal batteries. Energy Storage Mater. 56, 611–620 (2023). https://doi.org/10.1016/j.ensm.2023.01.043
- Y. Ren, M. Yang, Z. Shi, J. Guo, D. Chu et al., A metalophilic, anion-trapped composite gel electrolyte enables highly stable electrode/electrolyte interfaces in sodium metal batteries. Energy Storage Mater. 61, 102909 (2023). https://doi.org/10.1016/j.ensm.2023.102909
- Q. Wang, X. He, Y. Wang, Y. Ma, D. Zhang et al., In-situ constructing efficient gel polymer electrolyte with fluoride-rich interface enabling high-capacity, long-cycling sodium metal batteries. Electrochim. Acta 465, 142968 (2023). https://doi.org/10.1016/j.electacta.2023.142968
- J. Zheng, J. Zhang, W. Li, J. Ge, W. Chen, Phosphate-based gel polymer electrolyte enabling remarkably long cycling stable sodium storage in a wide-operating-temperature. Chem. Eng. J. 465, 142796 (2023). https://doi.org/10.1016/j.cej.2023.142796
- W. Tian, Z. Li, L. Miao, Z. Sun, Q. Wang et al., Composite quasi-solid-state electrolytes with organic–inorganic interface engineering for fast ion transport in dendrite-free sodium metal batteries. Adv. Mater. 36(13), 2308586 (2024). https://doi.org/10.1002/adma.202308586
- Y.-N. Zhou, Z. Xiao, D. Han, L. Yang, J. Zhang et al., Approaching practically accessible and environmentally adaptive sodium metal batteries with high loading cathodes through in situ interlock interface. Adv. Funct. Mater. 32(26), 2111314 (2022). https://doi.org/10.1002/adfm.202111314
- J. Lin, P. Huang, T. Naren, Y. Zhang, L. Zhou et al., Conformally reactive interphase enables excellent kinetics and cyclability in quasi-solid-state sodium metal battery. Energy Storage Mater. 70, 103495 (2024). https://doi.org/10.1016/j.ensm.2024.103495
- A.A. Bristi, A.J. Samson, A. Sivakumaran, S. Butler, V. Thangadurai, Ionic conductivity, na plating-stripping, and battery performance of solid polymer na ion electrolyte based on poly(vinylidene fluoride) and poly(vinyl pyrrolidone). ACS Appl. Energy Mater. 5(7), 8812–8822 (2022). https://doi.org/10.1021/acsaem.2c01296
- T.-H. Park, M.-S. Park, A.-H. Ban, Y.-S. Lee, D.-W. Kim, Nonflammable gel polymer electrolyte with ion-conductive polyester networks for sodium metal cells with excellent cycling stability and enhanced safety. ACS Appl. Energy Mater. 4(9), 10153–10162 (2021). https://doi.org/10.1021/acsaem.1c02053
- W. Niu, L. Chen, Y. Liu, L.-Z. Fan, All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chem. Eng. J. 384, 123233 (2020). https://doi.org/10.1016/j.cej.2019.123233
- Y. Zhang, H. Yuan, L. Shi, H. Lai, X. Wu et al., A biodegradable gel polymer electrolyte based on polydopamine-modified tough polyurethane enabling high-rate sodium batteries. ACS Sustain. Chem. Eng. 12(8), 3142–3152 (2024). https://doi.org/10.1021/acssuschemeng.3c07161
- X. Zhou, Z. Li, W. Li, X. Li, J. Fu et al., Regulating Na-ion solvation in quasi-solid electrolyte to stabilize Na metal anode. Adv. Funct. Mater. 33(11), 2212866 (2023). https://doi.org/10.1002/adfm.202212866
- M. Cheng, T. Qu, J. Zi, Y. Yao, F. Liang et al., A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology 31(42), 425401 (2020). https://doi.org/10.1088/1361-6528/aba059
- S. Gao, T. Yang, J. Liu, X. Zhang, X. Zhang et al., Incorporating sodium-conductive polymeric interfacial adhesive with inorganic solid-state electrolytes for quasi-solid-state sodium metal batteries. Small 20(38), 2401892 (2024). https://doi.org/10.1002/smll.202401892
- H.Y. Hong, Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 11(2), 173–182 (1976). https://doi.org/10.1016/0025-5408(76)90073-8
- Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song et al., Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Adv. Energy Mater. 10(30), 2001486 (2020). https://doi.org/10.1002/aenm.202001486
- L. Yang, H. Wang, Q. Liu, Z. Mei, L. Duan et al., Increase ionic conductivity of a Zn2+/F− synergy Na3Zr2Si2PO12 solid electrolyte for sodium metal batteries. J. Eur. Ceram. Soc. 43(10), 4443–4450 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.03.063
- W. Wang, M. Ding, S. Chen, J. Weng, P. Zhang et al., A novel composite solid electrolyte with ultrahigh ion transference number and stability for solid-state sodium metal batteries. Chem. Eng. J. 491, 151989 (2024). https://doi.org/10.1016/j.cej.2024.151989
- Y. Zhai, W. Hou, M. Tao, Z. Wang, Z. Chen et al., Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv. Mater. 34(39), 2205560 (2022). https://doi.org/10.1002/adma.202205560
- X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
- W. Chen, K. Zhou, Z. Wu, L. Yang, Y. Xie et al., Ion-concentration-hopping heterolayer gel for ultrahigh gradient energy conversion. J. Am. Chem. Soc. 146(19), 13191–13200 (2024). https://doi.org/10.1021/jacs.4c01036
- J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
References
B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe et al., Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 30(29), 1801334 (2018). https://doi.org/10.1002/adma.201801334
Y.-X. Wang, J. Yang, W. Lai, S.-L. Chou, Q.-F. Gu et al., Achieving high-performance room-temperature sodium–sulfur batteries with S@Interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 138(51), 16576–16579 (2016). https://doi.org/10.1016/j.jcis.2021.07.114
I. Landa-Medrano, C. Li, N. Ortiz-Vitoriano, I. Ruiz de Larramendi, J. Carrasco et al., Sodium-oxygen battery: steps toward reality. J. Phys. Chem. Lett. 7(7), 1161–1166 (2016). https://doi.org/10.1021/acs.jpclett.5b02845
S. Zhao, F. Ning, X. Yu, B. Guo, R.F. Teófilo et al., Inhomogeneous coordination in high-entropy O3-Type cathodes enables suppressed slab gliding and durable sodium storage. Angew. Chem. Int. Ed. 64(4), e202416290 (2025). https://doi.org/10.1002/anie.202416290
R. Wang, W. Feng, X. Yu, Q. Shi, P. Wang et al., Stable zero-sodium-excess solid-state batteries enabled by interphase stratification. eScience 4(6), 100274 (2024). https://doi.org/10.1016/j.esci.2024.100274
H. Fang, Y. Huang, W. Hu, Z. Song, X. Wei et al., Regulating ion-dipole interactions in weakly solvating electrolyte towards ultra-low temperature sodium-ion batteries. Angew. Chem. Int. Ed. 63(15), e202400539 (2024). https://doi.org/10.1002/anie.202400539
S. Gao, Z. Zhu, H. Fang, K. Feng, J. Zhong et al., Regulation of coordination chemistry for ultrastable layered oxide cathode materials of sodium-ion batteries. Adv. Mater. 36(16), 2311523 (2024). https://doi.org/10.1002/adma.202311523
Y. Sun, R. Hou, S. Xu, H. Zhou, S. Guo, Molecular engineering enabling high initial coulombic efficiency and rubost solid electrolyte interphase for hard carbon in sodium-ion batteries. Angew. Chem. Int. Ed. 63(11), e202318960 (2024). https://doi.org/10.1002/anie.202318960
B. Wang, J. Ma, K. Wang, D. Wang, G. Xu et al., High-entropy phase stabilization engineering enables high-performance layered cathode for sodium-ion batteries. Adv. Energy Mater. 14(23), 2401090 (2024). https://doi.org/10.1002/aenm.202401090
F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang et al., Emerging chemistry for wide-temperature sodium-ion batteries. Chem. Rev. 124(8), 4778–4821 (2024). https://doi.org/10.1021/acs.chemrev.3c00728
J. Bai, J.H. Jia, Y. Wang, C.C. Yang, Q. Jiang, Ideal bi-based hybrid anode material for ultrafast charging of sodium-ion batteries at extremely low temperatures. Nano-Micro Lett. 17(1), 60 (2024). https://doi.org/10.1007/s40820-024-01560-9
Z. Li, M. Han, J. Wang, L. Zhang, P. Yu et al., Superparamagnetic Fe conversion induces MoS2 fast ion transport in wide-temperature-range sodium-ion batteries. Adv. Funct. Mater. 34(41), 2404263 (2024). https://doi.org/10.1002/adfm.202404263
S. Liu, L. Zhou, T. Zhong, X. Wu, K. Neyts, Sulfide/polymer composite solid-state electrolytes for all-solid-state lithium batteries. Adv. Energy Mater. 14(48), 2403602 (2024). https://doi.org/10.1002/aenm.202403602
M. Ahuis, S. Doose, D. Vogt, P. Michalowski, S. Zellmer et al., Recycling of solid-state batteries. Nat. Energy 9(4), 373–385 (2024). https://doi.org/10.1038/s41560-024-01463-4
P. Song, S. Chen, J. Guo, J. Wu, Q. Lu et al., Electrostatic regulation of Na+ coordination chemistry for high-performance all-solid-state sodium batteries. Nano-Micro Lett. 18(1), 72 (2025). https://doi.org/10.1007/s40820-025-01910-1
X.X. Liu, L. Pan, H. Zhang, P. Yuan, M. Cao et al., Host-guest inversion engineering induced superionic composite solid electrolytes for high-rate solid-state alkali metal batteries. Nano-Micro Lett. 17(1), 190 (2025). https://doi.org/10.1007/s40820-025-01691-7
Y. Wang, Z. Wang, X. Xu, S.J.A. Oh, J. Sun et al., Ultra-stable sodium-ion battery enabled by all-solid-state ferroelectric-engineered composite electrolytes. Nano-Micro Lett. 16(1), 254 (2024). https://doi.org/10.1007/s40820-024-01474-6
A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through in situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16(1), 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
Z. Zhang, J. Gou, K. Cui, X. Zhang, Y. Yao et al., 12.6 μm-thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano-Micro Lett. 16(1), 181 (2024). https://doi.org/10.1007/s40820-024-01389-2
X. Guo, Z. Xie, R. Wang, J. Luo, J. Chen et al., Interface-compatible gel-polymer electrolyte enabled by NaF-solubility-regulation toward all-climate solid-state sodium batteries. Angew. Chem. Int. Ed. 63(18), e202402245 (2024). https://doi.org/10.1002/anie.202402245
D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629(8010), 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
X. Zhou, Y. Zhou, L. Yu, L. Qi, K.-S. Oh et al., Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53(10), 5291–5337 (2024). https://doi.org/10.1039/d3cs00551h
Q. Zhang, T. Bian, Z. Liu, C. Wang, X. Song et al., Tertiary-amine based network polymer electrolyte for improving the cyclic stability of Na metal batteries with large capacity. Adv. Energy Mater. 14(16), 2303791 (2024). https://doi.org/10.1002/aenm.202303791
S. Zhao, Y. Shen, H. Che, M. Jabeen, C. Lu et al., Cellulose derivative and polyionic liquid crosslinked network gel electrolytes for sodium metal quasi-solid-state batteries. Adv. Funct. Mater. 35(15), 2422162 (2025). https://doi.org/10.1002/adfm.202422162
N. Varan, P. Merghes, N. Plesu, L. Macarie, G. Ilia et al., Phosphorus-containing polymer electrolytes for Li batteries. Batteries 10(2), 56 (2024). https://doi.org/10.3390/batteries10020056
J.I. Kim, Y. Choi, K.Y. Chung, J.H. Park, A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 27(34), 1701768 (2017). https://doi.org/10.1002/adfm.201701768
K.G. Khatmullina, N.A. Slesarenko, A.V. Chernyak, G.R. Baymuratova, A.V. Yudina et al., New network polymer electrolytes based on ionic liquid and SiO2 nanops for energy storage systems. Membranes 13(6), 548 (2023). https://doi.org/10.3390/membranes13060548
D. Kumar, S.A. Hashmi, Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanops. J. Power. Sources 195(15), 5101–5108 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.026
P. Wang, J. Tan, Z. Liu, C. Wang, C. Bao et al., Accelerated 3D percolation network for ultra-high critical current density of composite solid-state electrolyte. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202512441
M. Das, N. Shukla, B. Boruah, A. Gogoi, L. Saikia et al., Cellulose acetate-based gel electrolytes grafted with surface-functionalized SiO2 nanofiber for green energy storing applications. Colloid. Surf. A Physicochem Eng. Asp. 686, 133268 (2024). https://doi.org/10.1016/j.colsurfa.2024.133268
T. Zhang, J. Li, X. Li, R. Wang, C. Wang et al., A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv. Mater. 34(41), 2205575 (2022). https://doi.org/10.1002/adma.202205575
X. Wu, X. Jie, X. Liang, L. Zhang, J. Wang et al., Polymer/ceramic gel electrolyte with in situ interface forming enhances the performance of lithium metal batteries. J. Energy Storage 78, 110107 (2024). https://doi.org/10.1016/j.est.2023.110107
D. Lei, Y.-B. He, H. Huang, Y. Yuan, G. Zhong et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10(1), 4244 (2019). https://doi.org/10.1038/s41467-019-11960-w
L. Shen, Y. Li, C. Hu, Z. Huang, B. Wang et al., A high-rate cathode material based on potassium-doped Na3V2(PO4)3 for high/low-temperature sodium-ion batteries. Mater. Today Chem. 30, 101506 (2023). https://doi.org/10.1016/j.mtchem.2023.101506
P. Yang, X. Gao, X. Tian, C. Shu, Y. Yi et al., Upgrading traditional organic electrolytes toward future lithium metal batteries: a hierarchical nano-SiO2-supported gel polymer electrolyte. ACS Energy Lett. 5(5), 1681–1688 (2020). https://doi.org/10.1021/acsenergylett.0c00412
H. Lai, Y. Lu, W. Zha, Y. Hu, Y. Zhang et al., In situ generated composite gel polymer electrolyte with crosslinking structure for dendrite-free and high-performance sodium metal batteries. Energy Storage Mater. 54, 478–487 (2023). https://doi.org/10.1016/j.ensm.2022.10.032
X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021). https://doi.org/10.1016/j.ensm.2020.10.006
Y. Wang, J. Qiu, J. Peng, J. Li, M. Zhai, One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J. Mater. Chem. A 5(24), 12393–12399 (2017). https://doi.org/10.1039/c7ta02291c
Q. Su, S. Huang, J. Liao, D. Song, W. Yuan et al., A flame retardant and flexible gel polymer electrolytes for high temperature lithium metal batteries. J. Electroanal. Chem. 945, 117712 (2023). https://doi.org/10.1016/j.jelechem.2023.117712
G. Chen, K. Zhang, Y. Liu, L. Ye, Y. Gao et al., Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chem. Eng. J. 401, 126065 (2020). https://doi.org/10.1016/j.cej.2020.126065
W. Yan, J. Wei, T. Chen, L. Duan, L. Wang et al., Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 80, 105510 (2021). https://doi.org/10.1016/j.nanoen.2020.105510
Y. Wang, Z. Wei, T. Ji, R. Bai, H. Zhu, Highly ionic conductive, stretchable, and tough ionogel for flexible solid-state supercapacitor. Small 20(20), 2307019 (2024). https://doi.org/10.1002/smll.202307019
X. Deng, J. Chen, X. Jia, X. Da, Y. Zhao et al., Highly tough slide-crosslinked gel polymer electrolyte for stable lithium metal batteries. Angew. Chem. Int. Ed. 63(43), e202410818 (2024). https://doi.org/10.1002/anie.202410818
J. Zhang, H. Wen, L. Yue, J. Chai, J. Ma et al., In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries. Small 13(2), 1601530 (2017). https://doi.org/10.1002/smll.201601530
M.L. Lehmann, G. Yang, D. Gilmer, K.S. Han, E.C. Self et al., Tailored crosslinking of Poly(ethylene oxide) enables mechanical robustness and improved sodium-ion conductivity. Energy Storage Mater. 21, 85–96 (2019). https://doi.org/10.1016/j.ensm.2019.06.028
Y. Zhu, Y. Yang, L. Fu, Y. Wu, A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochim. Acta 224, 405–411 (2017). https://doi.org/10.1016/j.electacta.2016.12.030
C. Lu, X. Chen, In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chem. Commun. 55(58), 8470–8473 (2019). https://doi.org/10.1039/c9cc03401c
Y. Cui, P. Zhang, Y. Tian, C. Wang, S. Wang et al., A robust 3D nanostructured composite polymer electrolyte with novel dual-ion channels toward solid-state sodium metal batteries. Chem. Eng. J. 498, 155375 (2024). https://doi.org/10.1016/j.cej.2024.155375
X. Wang, X. Wang, J. Chen, Y. Zhao, Z. Mao et al., Durable sodium battery composed of conductive Ti3C2Tx MXene modified gel polymer electrolyte. Solid State Ionics 365, 115655 (2021). https://doi.org/10.1016/j.ssi.2021.115655
A.P. Vijaya Kumar Saroja, A.K. R, B.C. Moharana, K. M, R. S, Design of porous calcium phosphate based gel polymer electrolyte for Quasi-solid state sodium ion battery. J. Electroanal. Chem. 859, 113864 (2020). https://doi.org/10.1016/j.jelechem.2020.113864
W. Zhang, J. Zhang, X. Liu, H. Li, Y. Guo et al., In-situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na+ solvation structure for sodium metal batteries. Adv. Funct. Mater. 32(25), 2201205 (2022). https://doi.org/10.1002/adfm.202201205
C. Luo, T. Shen, H. Ji, D. Huang, J. Liu et al., Mechanically robust gel polymer electrolyte for an ultrastable sodium metal battery. Small 16(2), 1906208 (2020). https://doi.org/10.1002/smll.201906208
L. Ma, X. Li, J. Tan, Z. Fang, Z. Liu et al., Anion-immobilized gel polymer electrolyte with a high ion transference number for high-performance lithium/sodium metal batteries. ACS Appl. Mater. Interfaces 15(49), 57201–57210 (2023). https://doi.org/10.1021/acsami.3c13883
C. Chen, Y. Li, C. Wang, H. He, M. Liu et al., A composite gel polymer electrolyte for sodium metal battery at a wide temperature range. Battery Energy 3(2), 20230048 (2024). https://doi.org/10.1002/bte2.20230048
P. Wen, P. Lu, X. Shi, Y. Yao, H. Shi et al., Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv. Energy Mater. 11(6), 2002930 (2021). https://doi.org/10.1002/aenm.202002930
M. Yang, F. Feng, Y. Ren, S. Chen, F. Chen et al., Coupling anion-capturer with polymer chains in fireproof gel polymer electrolyte enables dendrite-free sodium metal batteries. Adv. Funct. Mater. 33(46), 2305383 (2023). https://doi.org/10.1002/adfm.202305383
Y. Zhang, H. Lai, X. Wu, Z. Wen, A gel polymer electrolyte with high uniform Na+ flux and its constructed hybrid interface synergistically to facilitate high-performance sodium batteries. Small Methods 8(12), 2400280 (2024). https://doi.org/10.1002/smtd.202400280
M. Yang, F. Feng, J. Guo, R. Wang, J. Yu et al., Anion trapping-coupling strategy driven asymmetric nonflammable gel electrolyte for high performance sodium batteries. Energy Storage Mater. 70, 103492 (2024). https://doi.org/10.1016/j.ensm.2024.103492
M. Yang, F. Feng, Z. Shi, J. Guo, R. Wang et al., Facile design of asymmetric flame-retardant gel polymer electrolyte with excellent interfacial stability for sodium metal batteries. Energy Storage Mater. 56, 611–620 (2023). https://doi.org/10.1016/j.ensm.2023.01.043
Y. Ren, M. Yang, Z. Shi, J. Guo, D. Chu et al., A metalophilic, anion-trapped composite gel electrolyte enables highly stable electrode/electrolyte interfaces in sodium metal batteries. Energy Storage Mater. 61, 102909 (2023). https://doi.org/10.1016/j.ensm.2023.102909
Q. Wang, X. He, Y. Wang, Y. Ma, D. Zhang et al., In-situ constructing efficient gel polymer electrolyte with fluoride-rich interface enabling high-capacity, long-cycling sodium metal batteries. Electrochim. Acta 465, 142968 (2023). https://doi.org/10.1016/j.electacta.2023.142968
J. Zheng, J. Zhang, W. Li, J. Ge, W. Chen, Phosphate-based gel polymer electrolyte enabling remarkably long cycling stable sodium storage in a wide-operating-temperature. Chem. Eng. J. 465, 142796 (2023). https://doi.org/10.1016/j.cej.2023.142796
W. Tian, Z. Li, L. Miao, Z. Sun, Q. Wang et al., Composite quasi-solid-state electrolytes with organic–inorganic interface engineering for fast ion transport in dendrite-free sodium metal batteries. Adv. Mater. 36(13), 2308586 (2024). https://doi.org/10.1002/adma.202308586
Y.-N. Zhou, Z. Xiao, D. Han, L. Yang, J. Zhang et al., Approaching practically accessible and environmentally adaptive sodium metal batteries with high loading cathodes through in situ interlock interface. Adv. Funct. Mater. 32(26), 2111314 (2022). https://doi.org/10.1002/adfm.202111314
J. Lin, P. Huang, T. Naren, Y. Zhang, L. Zhou et al., Conformally reactive interphase enables excellent kinetics and cyclability in quasi-solid-state sodium metal battery. Energy Storage Mater. 70, 103495 (2024). https://doi.org/10.1016/j.ensm.2024.103495
A.A. Bristi, A.J. Samson, A. Sivakumaran, S. Butler, V. Thangadurai, Ionic conductivity, na plating-stripping, and battery performance of solid polymer na ion electrolyte based on poly(vinylidene fluoride) and poly(vinyl pyrrolidone). ACS Appl. Energy Mater. 5(7), 8812–8822 (2022). https://doi.org/10.1021/acsaem.2c01296
T.-H. Park, M.-S. Park, A.-H. Ban, Y.-S. Lee, D.-W. Kim, Nonflammable gel polymer electrolyte with ion-conductive polyester networks for sodium metal cells with excellent cycling stability and enhanced safety. ACS Appl. Energy Mater. 4(9), 10153–10162 (2021). https://doi.org/10.1021/acsaem.1c02053
W. Niu, L. Chen, Y. Liu, L.-Z. Fan, All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chem. Eng. J. 384, 123233 (2020). https://doi.org/10.1016/j.cej.2019.123233
Y. Zhang, H. Yuan, L. Shi, H. Lai, X. Wu et al., A biodegradable gel polymer electrolyte based on polydopamine-modified tough polyurethane enabling high-rate sodium batteries. ACS Sustain. Chem. Eng. 12(8), 3142–3152 (2024). https://doi.org/10.1021/acssuschemeng.3c07161
X. Zhou, Z. Li, W. Li, X. Li, J. Fu et al., Regulating Na-ion solvation in quasi-solid electrolyte to stabilize Na metal anode. Adv. Funct. Mater. 33(11), 2212866 (2023). https://doi.org/10.1002/adfm.202212866
M. Cheng, T. Qu, J. Zi, Y. Yao, F. Liang et al., A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology 31(42), 425401 (2020). https://doi.org/10.1088/1361-6528/aba059
S. Gao, T. Yang, J. Liu, X. Zhang, X. Zhang et al., Incorporating sodium-conductive polymeric interfacial adhesive with inorganic solid-state electrolytes for quasi-solid-state sodium metal batteries. Small 20(38), 2401892 (2024). https://doi.org/10.1002/smll.202401892
H.Y. Hong, Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 11(2), 173–182 (1976). https://doi.org/10.1016/0025-5408(76)90073-8
Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song et al., Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Adv. Energy Mater. 10(30), 2001486 (2020). https://doi.org/10.1002/aenm.202001486
L. Yang, H. Wang, Q. Liu, Z. Mei, L. Duan et al., Increase ionic conductivity of a Zn2+/F− synergy Na3Zr2Si2PO12 solid electrolyte for sodium metal batteries. J. Eur. Ceram. Soc. 43(10), 4443–4450 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.03.063
W. Wang, M. Ding, S. Chen, J. Weng, P. Zhang et al., A novel composite solid electrolyte with ultrahigh ion transference number and stability for solid-state sodium metal batteries. Chem. Eng. J. 491, 151989 (2024). https://doi.org/10.1016/j.cej.2024.151989
Y. Zhai, W. Hou, M. Tao, Z. Wang, Z. Chen et al., Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv. Mater. 34(39), 2205560 (2022). https://doi.org/10.1002/adma.202205560
X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
W. Chen, K. Zhou, Z. Wu, L. Yang, Y. Xie et al., Ion-concentration-hopping heterolayer gel for ultrahigh gradient energy conversion. J. Am. Chem. Soc. 146(19), 13191–13200 (2024). https://doi.org/10.1021/jacs.4c01036
J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9