Functionalized Wood: A Green Nanoengineering Platform for Sustainable Technologies
Corresponding Author: Haibo Huang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 108
Abstract
Wood, once regarded primarily as a structural material, possesses rich physicochemical complexity that has long been underexplored. In the context of industrialization and carbon imbalance, it is now emerging as a renewable and multifunctional platform for green nanotechnologies. Recent advances in wood nanotechnology have enabled the transformation of natural wood into programmable substrates with tailored nanoarchitectures, establishing it as a representative class of bio-based nanomaterials. This review systematically categorizes wood-specific nanoengineering strategies—including thermal carbonization, laser-induced graphenization, targeted delignification, nanomaterial integration, and mechanical processing—highlighting their mechanisms and impacts on wood’s multiscale structural and functional properties. Importantly, these functionalization strategies can be flexibly combined in a modular, “Lego-like” manner, enabling wood to be reconfigured and optimized for diverse application scenarios. We summarize recent progress in applying functionalized wood to sustainable technologies such as energy storage (e.g., metal-ion batteries, Zn–air systems, supercapacitors), water treatment (e.g., adsorption, photothermal filtration, catalytic degradation), and energy conversion (e.g., solar evaporation, ionic thermoelectrics, hydrovoltaics, and triboelectric nanogenerators). These studies reveal how nanoengineered wood structures can enable efficient charge transport, selective adsorption, and enhanced light-to-heat conversion. Finally, the review discusses current challenges—such as scalable fabrication, material integration, and long-term environmental stability—and outlines future directions for the development of wood-based platforms in next-generation green energy and environmental systems.
Highlights:
1 The intrinsic hierarchical, anisotropic, and porous architecture of wood provides a structurally programmable scaffold that supports subsequent nanoengineering strategies, enabling multiscale property modulation for diverse sustainable applications.
2 Wood-specific hierarchical nanoengineering strategies—including carbonization, delignification, laser-induced graphene formation, and nanomaterial integration—are systematically categorized to enable tunable structures and properties across multiple length scales.
3 Functionalized wood with nanostructures enables sustainable solutions in energy storage (e.g., Zn–air batteries, supercapacitors), water treatment (e.g., adsorption, filtration), and renewable power generation (e.g., solar-thermal, thermoelectric and hydrovoltaic systems).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang, S. Ling, W. Chen, M.J. Buehler, D.L. Kaplan, Exploring nature’s toolbox: the role of biopolymers in sustainable materials science. Adv. Mater. 37(22), 2507822 (2025). https://doi.org/10.1002/adma.202507822
- H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu et al., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016). https://doi.org/10.1021/acs.chemrev.6b00225
- L. Zhang, H. Liu, B. Song, J. Gu, L. Li et al., Wood-inspired metamaterial catalyst for robust and high-throughput water purification. Nat. Commun. 15(1), 2046 (2024). https://doi.org/10.1038/s41467-024-46337-1
- S. You, Q. Zhang, J. Liu, Q. Deng, Z. Sun et al., Hard carbon with an opened pore structure for enhanced sodium storage performance. Energy Environ. Sci. 17(21), 8189–8197 (2024). https://doi.org/10.1039/d4ee02519a
- C.M. Clarkson, S.M. El Awad Azrak, E.S. Forti, G.T. Schueneman, R.J. Moon et al., Recent developments in cellulose nanomaterial composites. Adv. Mater. 33(28), 2000718 (2021). https://doi.org/10.1002/adma.202000718
- X. Liu, C. Wan, X. Li, S. Wei, L. Zhang et al., Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment. Front. Environ. Sci. Eng. 15(4), 54 (2020). https://doi.org/10.1007/s11783-020-1346-6
- F. Wang, J. Lee, L. Chen, G. Zhang, S. He et al., Inspired by wood: thick electrodes for supercapacitors. ACS Nano 17(10), 8866–8898 (2023). https://doi.org/10.1021/acsnano.3c01241
- M. Schubert, G. Panzarasa, I. Burgert, Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123(5), 1889–1924 (2023). https://doi.org/10.1021/acs.chemrev.2c00360
- C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5(9), 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
- C. Chen, L. Berglund, I. Burgert, L. Hu, Wood nanomaterials and nanotechnologies. Adv. Mater. 33(28), 2006207 (2021). https://doi.org/10.1002/adma.202006207
- O. Paris, G. Fritz-Popovski, D. Van Opdenbosch, C. Zollfrank, Recent progress in the replication of hierarchical biological tissues. Adv. Funct. Mater. 23(36), 4408–4422 (2013). https://doi.org/10.1002/adfm.201300217
- S.K. Lengger, L. Neumaier, L. Haiden, M. Feuchter, T. Griesser et al., Laser-induced graphene formation on different wood species: dependence of electronic performance on intrinsic features of certain types of wood. Sustain. Mater. Technol. 40, e00936 (2024). https://doi.org/10.1016/j.susmat.2024.e00936
- C. Chen, L. Hu, Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33(28), 2002890 (2021). https://doi.org/10.1002/adma.202002890
- H. Wang, H. Wu, D. Ye, C. Zhao, Q. Wu et al., Micro-cylindrical/fibric electronic devices: materials, fabrication, health and environmental monitoring. Soft Sci. 4(4), 41 (2024). https://doi.org/10.20517/ss.2024.53
- N.A. Zulkifli, W. Jeong, M. Kim, C. Kim, Y.H. Ko et al., 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation. Soft Sci. 4(2), 20 (2024). https://doi.org/10.20517/ss.2024.11
- Q. Cheng, J. Li, Q. Zhang, Fibre computer enables more accurate recognition of human activity. Nano-Micro Lett. 17(1), 286 (2025). https://doi.org/10.1007/s40820-025-01809-x
- Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
- C. Ge, D. Xu, X. Feng, X. Yang, Z. Song et al., Recent advances in fibrous materials for hydroelectricity generation. Nano-Micro Lett. 17(1), 29 (2024). https://doi.org/10.1007/s40820-024-01537-8
- X. Dong, R. Song, P. Wang, J. Tang, Y. Wang et al., Multiscale engineered waste wood ps toward a sustainable, scalable, and high-performance structural material. Adv. Funct. Mater. 34(9), 2308361 (2024). https://doi.org/10.1002/adfm.202308361
- S. Guo, Y. Zhang, Z. Yu, M. Dai, X. Liu et al., Leaf-based energy harvesting and storage utilizing hygroscopic iron hydrogel for continuous power generation. Nat. Commun. 16(1), 5267 (2025). https://doi.org/10.1038/s41467-025-60341-z
- Y.-J. Park, Y.-I. Ryu, M.-K. Choi, K.-S. Kim, S.-K. Kang, Controlling the lifetime of biodegradable electronics: from dissolution kinetics to trigger acceleration. Soft Sci. 4(2), 16 (2024). https://doi.org/10.20517/ss.2024.06
- S.J. Yoon, J.T. Park, Y.K. Lee, The neuromorphic computing for biointegrated electronics. Soft Sci. 4(3), 30 (2024). https://doi.org/10.20517/ss.2024.12
- H. Zhong, Q. Huang, M. Zou, F. Li, Y. Liu et al., From food to hard carbon: citric acid enhanced biomass-derived anodes for high-performance sodium storage. Chem. Eng. J. 508, 160879 (2025). https://doi.org/10.1016/j.cej.2025.160879
- Y. Liu, S.-G. Han, X. Li, Y. Luo, Y. Wu et al., Manganese dioxide cathode materials for aqueous zinc ion battery: Development, challenges and strategies. EnergyChem 7(3), 100152 (2025). https://doi.org/10.1016/j.enchem.2025.100152
- H. Dong, S. Wei, W. Chen et al., Bioinspired lignocellulose foam: exceptional toughness and thermal insulation. ACS Nano 19(12), 11712–11727 (2025). https://doi.org/10.1021/acsnano.4c11945
- R. Zhang, D. Chen, M. Hummelgård, N. Blomquist, C. Dahlström et al., Engineering triboelectric paper for energy harvesting and smart sensing. Adv. Mater. 37(22), 2416641 (2025). https://doi.org/10.1002/adma.202416641
- H. Shan, P. Poredoš, H. Qu, X. Yang, M. Zhou et al., Integrating rooftop agriculture and atmospheric water harvesting for water-food production based on hygroscopic manganese complex. Adv. Funct. Mater. 34(38), 2402839 (2024). https://doi.org/10.1002/adfm.202402839
- Y. Zhou, Y. Zhang, Y. Pang, H. Guo, Y. Guo et al., Thermally conductive Ti3C2Tx fibers with superior electrical conductivity. Nano-Micro Lett. 17(1), 235 (2025). https://doi.org/10.1007/s40820-025-01752-x
- Q. Huang, T. Xie, Y. Luo, J.-E. Zhou, Y. Wu et al., A comprehensive review on zinc-based MOFs and their derivatives for alkali-ion batteries: synthesis, applications, and future prospects. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508749
- F. Sheng, C. Zhao, B. Zhang, Y. Tan, K. Dong, Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare. Soft Sci. 4(1), 2 (2024). https://doi.org/10.20517/ss.2023.35
- J. Tu, M. Wang, W. Li, J. Su, Y. Li et al., Electronic skins with multimodal sensing and perception. Soft Sci. 3(3), 24 (2023). https://doi.org/10.20517/ss.2023.15
- Y. Xi, P. Tan, Z. Li, Y. Fan, Self-powered wearable IoT sensors as human-machine interfaces. Soft Sci. 3(3), 26 (2023). https://doi.org/10.20517/ss.2023.13
- Z. Ma, B.L. Khoo, Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare. Soft Sci. 4(3), 26 (2024). https://doi.org/10.20517/ss.2024.20
- D. Tao, X. Wen, C. Yang, K. Yan, Z. Li et al., Controlled twill surface structure endowing nanofiber composite membrane excellent electromagnetic interference shielding. Nano-Micro Lett. 16(1), 236 (2024). https://doi.org/10.1007/s40820-024-01444-y
- T. Keplinger, X. Wang, I. Burgert, Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J. Mater. Chem. A 7(7), 2981–2992 (2019). https://doi.org/10.1039/c8ta10711d
- J. Wang, D. Zhang, F. Chu, Wood-derived functional polymeric materials. Adv. Mater. 33(28), 2001135 (2021). https://doi.org/10.1002/adma.202001135
- X. Han, C. Hao, Y. Peng, H. Yu, T. Zhang et al., Novel cellulosic fiber composites with integrated multi-band electromagnetic interference shielding and energy storage functionalities. Nano-Micro Lett. 17(1), 122 (2025). https://doi.org/10.1007/s40820-025-01652-0
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- X. Hu, R. Yu, F. Wang, Z. Liu, H. Yang et al., Fabrication, functionalities and applications of transparent wood: a review. Adv. Funct. Mater. 33(37), 2303278 (2023). https://doi.org/10.1002/adfm.202303278
- S. He, X. Zhao, E.Q. Wang, G.S. Chen, P.-Y. Chen et al., Engineered wood: sustainable technologies and applications. Annu. Rev. Mater. Res. 53, 195–223 (2023). https://doi.org/10.1146/annurev-matsci-010622-105440
- Z. Wang, X.-F. Zhang, X. Kong, J. Yao, Top-down fabrication of wood hydrogels: from preparation to application. Chem. Eng. J. 490, 151518 (2024). https://doi.org/10.1016/j.cej.2024.151518
- D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14(1), 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- Y. Zhu, L. Li, Wood of trees: cellular structure, molecular formation, and genetic engineering. J. Integr. Plant Biol. 66(3), 443–467 (2024). https://doi.org/10.1111/jipb.13589
- X. Chen, Q. Zhu, B. Jiang, D. Li, X. Song et al., Research progress of wood and lignocellulose in sustainable piezoelectric systems. Nano Energy 126, 109650 (2024). https://doi.org/10.1016/j.nanoen.2024.109650
- S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14(1), 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
- H.A.M. Saeed, W. Xu, H. Yang, The application of cellulosic-based materials on interfacial solar steam generation for highly efficient wastewater purification: a review. Carbon Energy 6(9), e540 (2024). https://doi.org/10.1002/cey2.540
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- F. Guo, Z. Ren, S. Wang, Y. Xie, J. Pan et al., Recent progress of electrospun nanofiber-based composite materials for monitoring physical, physiological, and body fluid signals. Nano-Micro Lett. 17(1), 302 (2025). https://doi.org/10.1007/s40820-025-01804-2
- S. Tanpichai, A. Boonmahitthisud, N. Soykeabkaew, L. Ongthip, Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr. Polym. 286, 119192 (2022). https://doi.org/10.1016/j.carbpol.2022.119192
- Q. Long, G. Jiang, J. Zhou, D. Zhao, P. Jia et al., Cellulose ionic gel and its sustainable thermoelectric devices–Design, applications and prospects. Nano Energy 120, 109130 (2024). https://doi.org/10.1016/j.nanoen.2023.109130
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- Y. Yang, X. Kang, Y. Yang, H. Ye, J. Jiang et al., Research progress in green preparation of advanced wood-based composites. Adv. Compos. Hybrid Mater. 6(6), 202 (2023). https://doi.org/10.1007/s42114-023-00770-w
- J. Li, C. Chen, J.Y. Zhu, A.J. Ragauskas, L. Hu, In situ wood delignification toward sustainable applications. Acc. Mater. Res. 2(8), 606–620 (2021). https://doi.org/10.1021/accountsmr.1c00075
- W. Li, W. Zhang, Y. Xu, G. Wang, T. Xu et al., Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality. Nano Energy 128, 109912 (2024). https://doi.org/10.1016/j.nanoen.2024.109912
- Q. Fu, Y. Chen, M. Sorieul, Wood-based flexible electronics. ACS Nano 14(3), 3528–3538 (2020). https://doi.org/10.1021/acsnano.9b09817
- R. Xia, W. Zhang, Y. Yang, J. Zhao, Y. Liu et al., Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation. J. Clean. Prod. 296, 126598 (2021). https://doi.org/10.1016/j.jclepro.2021.126598
- J. Wu, T. Shen, S. Li, Y. Wu, L. Cai et al., Sustainable transparent wood focusing on lignin decolorization methods, polymer impregnation techniques and applications in functional buildings: a review. Int. J. Biol. Macromol. 302, 140554 (2025). https://doi.org/10.1016/j.ijbiomac.2025.140554
- R. Das, T. Lindström, P.R. Sharma, K. Chi, B.S. Hsiao, Nanocellulose for sustainable water purification. Chem. Rev. 122(9), 8936–9031 (2022). https://doi.org/10.1021/acs.chemrev.1c00683
- C. Liu, P. Luan, Q. Li, Z. Cheng, P. Xiang et al., Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mater. 33(28), 2001654 (2021). https://doi.org/10.1002/adma.202001654
- M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai et al., Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8(4), 1701028 (2018). https://doi.org/10.1002/aenm.201701028
- J. Aslam, M.A. Waseem, X.-M. Lu, W. Sun, Y. Wang, From biochar to battery electrodes: a pathway to green lithium and sodium-ion battery systems. Chem. Eng. J. 505, 159556 (2025). https://doi.org/10.1016/j.cej.2025.159556
- R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
- S. Bai, L. Ruan, H. Chen, Y. Du, H. Deng et al., Laser-induced graphene: carbon precursors, fabrication mechanisms, material characteristics, and applications in energy storage. Chem. Eng. J. 493, 152805 (2024). https://doi.org/10.1016/j.cej.2024.152805
- Z. Wo, X. Sun, H. Sun, Y. Su, Y. Xie et al., All-in-one design of wood evaporator with highly-efficient salt resistance for sustainable solar desalination and contaminated water purification. Chem. Eng. J. 507, 160715 (2025). https://doi.org/10.1016/j.cej.2025.160715
- H. Han, X. Meng, Hydrothermal preparation of C3N4 on carbonized wood for photothermal-photocatalytic water splitting to efficiently evolve hydrogen. J. Colloid Interface Sci. 650, 846–856 (2023). https://doi.org/10.1016/j.jcis.2023.07.059
- Z. Chen, W. Wei, X. Xu, X. Gu, C. Huang et al., Reconstructed anti-corrosive and active surface on hierarchically porous carbonized wood for efficient overall seawater electrolysis. Sci. Bull. 69(15), 2337–2341 (2024). https://doi.org/10.1016/j.scib.2024.05.044
- A. Geng, L. Xu, L. Gan, C. Mei, L. Wang et al., Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal. Chemosphere 250, 126291 (2020). https://doi.org/10.1016/j.chemosphere.2020.126291
- R. Guo, Z. Yang, X. Pan, X. Ma, Y. Qiu et al., NiS nanosheets decorated on hollow carbon spheres from liquefied wood for supercapacitors. Langmuir 39(19), 6924–6931 (2023). https://doi.org/10.1021/acs.langmuir.3c00627
- Z. Huang, Z. Cao, Y.-F. Chen, M. Zhu, An ultrastrong and ultraflexible wood veneer via fiber interaction enhancement and defect reduction. ACS Nano 19(18), 17385–17392 (2025). https://doi.org/10.1021/acsnano.4c17158
- M. Zou, Y. Chen, L. Chang, X. Cheng, L. Gao et al., Toward 90 μm superthin transparent wood film impregnated with quantum dots for color-converting materials. ACS Sustainable Chem. Eng. 10(6), 2097–2106 (2022). https://doi.org/10.1021/acssuschemeng.1c07013
- Y. Huang, K. Jiang, Y. He, J. Hu, K. Dyer et al., A natural lignification inspired super-hard wood-based composites with extreme resilience. Adv. Mater. 37(19), 2502266 (2025). https://doi.org/10.1002/adma.202502266
- M. Gu, Y. Zhong, J. Hu, T. Zhang, S. Mei et al., Bio-inspired nanoengineered wood for scalable monolithic gas sensor fabrication. Adv. Mater. (2025). https://doi.org/10.1002/adma.202507829
- J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
- Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14(1), 6024 (2023). https://doi.org/10.1038/s41467-023-39637-5
- Q. Fu, L. Medina, Y. Li, F. Carosio, A. Hajian et al., Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interfaces 9(41), 36154–36163 (2017). https://doi.org/10.1021/acsami.7b10008
- F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu et al., Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6(14), 1600377 (2016). https://doi.org/10.1002/aenm.201600377
- M. Yu, G.-J. Zhang, T. Saunders, Wood-derived ultra-high temperature carbides and their composites: a review. Ceram. Int. 46(5), 5536–5547 (2020). https://doi.org/10.1016/j.ceramint.2019.11.104
- L.-L. Lu, Y.-Y. Lu, Z.-J. Xiao, T.-W. Zhang, F. Zhou et al., Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 30(20), e1706745 (2018). https://doi.org/10.1002/adma.201706745
- Z. Tang, Z. Pei, Z. Wang, H. Li, J. Zeng et al., Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 130, 532–543 (2018). https://doi.org/10.1016/j.carbon.2018.01.055
- Y. Gao, K. Zhang, X. Du, G. Liu, Y. Du et al., Wood-derived closed pore hard carbon encapsulated micro-sized silicon anode design for long-term practical lithium-ion battery. Chem. Eng. J. 508, 160846 (2025). https://doi.org/10.1016/j.cej.2025.160846
- Y. Chen, Y. Liao, Y. Ding, Y. Wu, L. Li et al., Synchronously reconfiguring closed pore and interlayer spacing of wood-derived hard carbon via hot-pressing for advanced sodium-ion batteries. Green Chem. 27(27), 8143–8153 (2025). https://doi.org/10.1039/d5gc00409h
- L.X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji et al., Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036
- R. Kumar, R. Pandey, E. Joanni, R. Savu, Laser-induced and catalyst-free formation of graphene materials for energy storage and sensing applications. Chem. Eng. J. 497, 154968 (2024). https://doi.org/10.1016/j.cej.2024.154968
- Y. Yue, X. Li, Z. Zhao, H. Wang, X. Guo, Stretchable flexible sensors for smart tires based on laser-induced graphene technology. Soft Sci. 3(2), 13 (2023). https://doi.org/10.20517/ss.2023.02
- R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31(1), 1803621 (2019). https://doi.org/10.1002/adma.201803621
- J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714
- Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
- M. Wang, H.K. Nam, D. Yang, Y. Lee, Y. Lu et al., Green smart multifunctional wooden roofs enabled by single-step hydrophobic laser-induced graphene fabrication. Carbon 228, 119373 (2024). https://doi.org/10.1016/j.carbon.2024.119373
- C.H. Dreimol, H. Guo, M. Ritter, T. Keplinger, Y. Ding et al., Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nat. Commun. 13(1), 3680 (2022). https://doi.org/10.1038/s41467-022-31283-7
- T.D. Le, S. Park, J. An, P.S. Lee, Y.-J. Kim, Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 29(33), 1902771 (2019). https://doi.org/10.1002/adfm.201902771
- R. Miyakoshi, S. Hayashi, M. Terakawa, Simultaneous laser-based graphitization and microstructuring of bamboo for supercapacitors derived from renewable resources. RSC Adv. 12(46), 29647–29652 (2022). https://doi.org/10.1039/D2RA05641K
- H.K. Nam, J. Choi, T. Jing, D. Yang, Y. Lee et al., Laser-induced graphene formation on recycled woods for green smart furniture. EcoMat 6(4), e12447 (2024). https://doi.org/10.1002/eom2.12447
- Y.-R. Kim, H.K. Nam, Y. Lee, D. Yang, T.D. Le et al., Green supercapacitor patterned by synthesizing MnO/laser-induced-graphene hetero-nanostructures on wood via femtosecond laser pulses. Biochar 6(1), 36 (2024). https://doi.org/10.1007/s42773-024-00320-7
- A. Imbrogno, J. Islam, C. Santillo, R. Castaldo, L. Sygellou et al., Laser-induced graphene supercapacitors by direct laser writing of cork natural substrates. ACS Appl. Electron. Mater. 4(4), 1541–1551 (2022). https://doi.org/10.1021/acsaelm.1c01202
- M. Zhu, J. Song, T. Li, A. Gong, Y. Wang et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427
- Y. Li, Q. Fu, S. Yu, M. Yan, L. Berglund, Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol 17(4), 1358–1364 (2016). https://doi.org/10.1021/acs.biomac.6b00145
- Y. Li, Q. Fu, R. Rojas, M. Yan, M. Lawoko et al., Lignin-retaining transparent wood. Chemsuschem 10(17), 3445–3451 (2017). https://doi.org/10.1002/cssc.201701089
- C. Montanari, Y. Li, H. Chen, M. Yan, L.A. Berglund, Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl. Mater. Interfaces 11(22), 20465–20472 (2019). https://doi.org/10.1021/acsami.9b05525
- K. Xu, Y. Jiao, J. Li, H. Xiao, Q. Fu, FeP nanop embedded in N, P-doped 3D porous wood-derived carbon aerogel for oxygen reduction reaction. Carbon 228, 119408 (2024). https://doi.org/10.1016/j.carbon.2024.119408
- Y. Yu, W.-H. Chen, X. Wang, X. Sun, Z. Jiang et al., Self-assembled MXene supported on carbonization-free wood for a symmetrical all-wood eco-supercapacitor. ACS Appl. Mater. Interfaces 16(28), 36322–36332 (2024). https://doi.org/10.1021/acsami.4c05129
- J. Wu, T. Li, Q. Zhao, X. Wen, L. Liu et al., Flexible wood-based composite for solar water evaporation and waste heat power generation. Sustain. Mater. Technol. 40, e00950 (2024). https://doi.org/10.1016/j.susmat.2024.e00950
- J. He, W. Han, H. Jiang, T. Zhang, X. Wang et al., Enhancing thermal localization efficiency in a wood-based solar steam generator with inverted-pyramid structure. Desalination 574, 117271 (2024). https://doi.org/10.1016/j.desal.2023.117271
- K. Zhang, X. Li, C. Yan, R. Shi, Z. Fang et al., All-wood-based ionic power generator with dual functions for alkaline wastewater reuse and energy harvesting. ACS Nano 18(14), 10259–10269 (2024). https://doi.org/10.1021/acsnano.4c00990
- J. Lin, Z. Zhang, X. Lin, X. Cai, S. Fu et al., All wood-based water evaporation-induced electricity generator. Adv. Funct. Mater. 34(30), 2314231 (2024). https://doi.org/10.1002/adfm.202314231
- C. Wang, S. Tang, B. Li, J. Fan, J. Zhou, Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional evaporation-driven electrical generation. Chem. Eng. J. 455, 140568 (2023). https://doi.org/10.1016/j.cej.2022.140568
- Y. Long, J. Zhang, H. Bian, T. Xu, S. Wang et al., In-situ synthesis of magnetic nanops/wood-structural holocellulose hybrid for metal ions adsorption. Carbohydr. Polym. 357, 123436 (2025). https://doi.org/10.1016/j.carbpol.2025.123436
- M. Zhang, D. Zheng, L. Shi, C. Zhang, H. Fei et al., Construction of magnetic and photothermal wood membrane with asymmetric wettabilities and wind drift resistance for solar-driven seawater desalination and purification. Chem. Eng. J. 493, 152878 (2024). https://doi.org/10.1016/j.cej.2024.152878
- X. Wang, L. Sun, Y. Shen, J. Hou, Y. Sun et al., Self-rotating wood-based floating solar-driven interfacial evaporator for continuous and high-efficiency desalination. Chem. Eng. J. 509, 161363 (2025). https://doi.org/10.1016/j.cej.2025.161363
- Y. Liu, Y. Miao, Z. Huang, R. Wang, Y. Peng et al., A lignin-wood Janus membrane with three-dimensional interconnected layered micro/nano channels for on-demand separation of surfactant-stabilized oil/water emulsions. Desalination 606, 118772 (2025). https://doi.org/10.1016/j.desal.2025.118772
- S. Kim, K. Kim, G. Jun, W. Hwang, Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14(12), 17233–17240 (2020). https://doi.org/10.1021/acsnano.0c07206
- K. Wang, X. Liu, Y. Tan, W. Zhang, S. Zhang et al., Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem. Eng. J. 371, 769–780 (2019). https://doi.org/10.1016/j.cej.2019.04.108
- Z. Qiu, F. Yu, D. Xu, Z. Wang, J. Huang et al., Ultrafast self-propelling directionally water transporting wood via cell wall reshaping for water manipulation. Chem. Eng. J. 455, 140563 (2023). https://doi.org/10.1016/j.cej.2022.140563
- Y. Guo, J. Zhang, C. Wang, M. Liu, J. You et al., Green pretreatment of lignocellulosic biomasses via deep eutectic solvents. Sustain. Chem. Pharm. 39, 101569 (2024). https://doi.org/10.1016/j.scp.2024.101569
- P. Li, T. Li, S. Wu, Process parameters and product characterization for efficient extraction of lignin with deep eutectic solvents: a review. Int. J. Biol. Macromol. 280, 136053 (2024). https://doi.org/10.1016/j.ijbiomac.2024.136053
- I.A. Lawal, M. Klink, P. Ndungu, Deep eutectic solvent as an efficient modifier of low-cost adsorbent for the removal of pharmaceuticals and dye. Environ. Res. 179, 108837 (2019). https://doi.org/10.1016/j.envres.2019.108837
- Y. Huang, F. Feng, J. Jiang, Y. Qiao, T. Wu et al., Green and efficient extraction of rutin from Tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 221, 1400–1405 (2017). https://doi.org/10.1016/j.foodchem.2016.11.013
- Z.-J. He, K. Chen, Z.-H. Liu, B.-Z. Li, Y.-J. Yuan, Valorizing renewable cellulose from lignocellulosic biomass toward functional products. J. Clean. Prod. 414, 137708 (2023). https://doi.org/10.1016/j.jclepro.2023.137708
- O. Długosz, M. Banach, Green methods for obtaining deep eutectic solvents (DES). J. Clean. Prod. 434, 139914 (2024). https://doi.org/10.1016/j.jclepro.2023.139914
- S. Behera, R. Arora, N. Nandhagopal, S. Kumar, Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014). https://doi.org/10.1016/j.rser.2014.04.047
- F. Shen, J. Xu, J. Yan, S. Wu, C. He et al., Facile fabrication of functionalized wood evaporator through deep eutectic solvent delignification for efficient solar-driven water purification. J. Environ. Chem. Eng. 11(6), 111234 (2023). https://doi.org/10.1016/j.jece.2023.111234
- Y. Wang, Q. Liu, C. Yan, G. Song, W.S. Price et al., Deep eutectic solvent-driven mild lignocellulose pretreatment: unlocking lignin valorization and carbohydrate digestibility. Chem. Eng. J. 504, 158825 (2025). https://doi.org/10.1016/j.cej.2024.158825
- C.-W. Zhang, S.-Q. Xia, P.-S. Ma, Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol. 219, 1–5 (2016). https://doi.org/10.1016/j.biortech.2016.07.026
- Z. Guo, Z. Ling, C. Wang, X. Zhang, F. Xu, Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue. Bioresour. Technol. 265, 334–339 (2018). https://doi.org/10.1016/j.biortech.2018.06.027
- Q. Liu, X. Zhao, D. Yu, H. Yu, Y. Zhang et al., Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin. Green Chem. 21(19), 5291–5297 (2019). https://doi.org/10.1039/C9GC02306B
- K. Kohli, S. Katuwal, A. Biswas, B.K. Sharma, Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour. Technol. 303, 122897 (2020). https://doi.org/10.1016/j.biortech.2020.122897
- G. Wu, Y. Cheng, C. Huang, C. Yong, Y. Fu, Deep eutectic solvent engineering: a novel ternary system for efficient lignocellulose extraction. Green Chem. 27(5), 1556–1569 (2025). https://doi.org/10.1039/D4GC05138F
- Y. Fan, H. Ji, X. Ji, Z. Tian, J. Chen, A deep eutectic solvent with a lignin stabilization and functionalization for lignocellulosic biomass pretreatment. Chem. Eng. J. 499, 156482 (2024). https://doi.org/10.1016/j.cej.2024.156482
- I. Gómez-Cruz, N. Seixas, J. Labidi, E. Castro, A.J.D. Silvestre et al., Delignification of olive tree pruning using a ternary eutectic solvent for enhanced saccharification and isolation of a unique lignin fraction. ACS Sustainable Chem. Eng. 12(41), 15012–15023 (2024). https://doi.org/10.1021/acssuschemeng.4c03693
- C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15(1), 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
- S. Zhu, S. Kumar Biswas, Z. Qiu, Y. Yue, Q. Fu et al., Transparent wood-based functional materials via a top-down approach. Prog. Mater. Sci. 132, 101025 (2023). https://doi.org/10.1016/j.pmatsci.2022.101025
- Y. Wang, Y. Zhang, P. Xing, X. Li, Q. Du et al., Self-encapsulation of high-entropy alloy nanops inside carbonized wood for highly durable electrocatalysis. Adv. Mater. 36(28), 2402391 (2024). https://doi.org/10.1002/adma.202402391
- Z. Shi, C. Mao, L. Zhong, J. Peng, M. Liu et al., Mo-doped Ni3S4 nanosheets grown on carbonized wood as highly efficient and durable electrocatalysts for water splitting. Appl. Catal. B Environ. 339, 123123 (2023). https://doi.org/10.1016/j.apcatb.2023.123123
- D. Łukawski, P. Hochmańska-Kaniewska, D. Janiszewska-Latterini, A. Lekawa-Raus, Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives. Wood Sci. Technol. 57(5), 989–1037 (2023). https://doi.org/10.1007/s00226-023-01484-4
- M. Lazari, F. Elmi, Structural study of coated wood with superhydrophobic chitosan/silica hybrid nanocomposite in seawater. Prog. Org. Coat. 186, 108076 (2024). https://doi.org/10.1016/j.porgcoat.2023.108076
- S. Wu, F. Shen, F. Yang, L. Chen, M. Huang et al., All-biomass-based solar steam generator with deep eutectic solvent lignin porous carbon/silver nanop coatings for efficient water evaporation. ACS Appl. Nano Mater. 7(14), 16564–16574 (2024). https://doi.org/10.1021/acsanm.4c02563
- Z. Xiao, R. Ai, Y. Wang, L. Xu, J. Li, Preparation and superhydrophobicity of nano-Al-coated wood by magnetron sputtering based on glow-discharge plasma. Forests 14(9), 1761 (2023). https://doi.org/10.3390/f14091761
- Y. Zhang, Y. Huang, M.-C. Li, S. Zhang, W. Zhou et al., Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360 (2023). https://doi.org/10.1016/j.cej.2022.139360
- R. Bansal, H.C. Barshilia, K.K. Pandey, Nanotechnology in wood science: innovations and applications. Int. J. Biol. Macromol. 262, 130025 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130025
- J. Sun, M. Shen, A.-J. Chang, C. Liang, C. Xiong et al., Cascade protection strategy for anchoring atomic FeN3 sites within defect-rich wood carbon aerogel for high-performance Zn-air batteries and versatile application. Chem. Eng. J. 503, 158551 (2025). https://doi.org/10.1016/j.cej.2024.158551
- M.J. Ahmed, A. Sánchez-Ferrer, Wood-supported cationic polyelectrolyte membranes from a reactive ionic liquid for water detoxification. Chem. Eng. J. 505, 158841 (2025). https://doi.org/10.1016/j.cej.2024.158841
- W. Lu, D. Jiang, Z. Wang, X. Zhang, Q. Ding et al., Simultaneous efficient evaporation and stable electricity generation enabled by a wooden evaporator based on composite photothermal effect. Chem. Eng. J. 496, 154361 (2024). https://doi.org/10.1016/j.cej.2024.154361
- L.-H. Xu, Q. Wang, L. Hu, D. Shen, S. Chu et al., Engineering asymmetric bimetallic CoM (M = Ni, Fe, Mn, Cu) nanops encapsulated in freestanding wood-derived carbon electrodes for enhanced ORR kinetics in zinc-air batteries. Small 21(5), e2410290 (2025). https://doi.org/10.1002/smll.202410290
- B. Luo, C. Cai, T. Liu, X. Meng, X. Zhuang et al., Multiscale structural nanocellulosic triboelectric aerogels induced by hofmeister effect. Adv. Funct. Mater. 33(42), 2306810 (2023). https://doi.org/10.1002/adfm.202306810
- W. Cheng, Y. Zhu, G. Jiang, K. Cao, S. Zeng et al., Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 138, 101152 (2023). https://doi.org/10.1016/j.pmatsci.2023.101152
- C. Cai, T. Liu, X. Meng, B. Luo, M. Chi et al., Lightweight and mechanically robust cellulosic triboelectric materials for wearable self-powered rehabilitation training. ACS Nano 19(1), 396–405 (2025). https://doi.org/10.1021/acsnano.4c08445
- W. Zhang, X. Chen, J. Zhao, X. Wang, X. Li et al., Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity. Nano Energy 108, 108196 (2023). https://doi.org/10.1016/j.nanoen.2023.108196
- M. Shi, X. Han, W. Qu, M. Jiang, Q. Li et al., Nanocellulose-derived hierarchical carbon framework-supported P-doped MoO2 nanops for optimizing redox kinetics in lithium-sulfur batteries. Adv. Mater. 37(22), e2419918 (2025). https://doi.org/10.1002/adma.202419918
- W. He, B. Wei, S. Liang, R. Wang, Q. Ji et al., Highly nanostructured and carboxylated wood aerogel-based adsorption membrane reconstructed by grafting of polyacrylic acid for efficient removal of heavy-metal ions. Chem. Eng. J. 493, 152411 (2024). https://doi.org/10.1016/j.cej.2024.152411
- H. Kong, Y. Li, J. Yan, X. Liu, M. Xiang et al., Enhancing electricity generation from water evaporation through cellulose-based multiscale fibers network. Chem. Eng. J. 498, 155872 (2024). https://doi.org/10.1016/j.cej.2024.155872
- Y. Qin, W. Zhang, Y. Liu, J. Zhao, J. Yuan et al., Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106, 108079 (2023). https://doi.org/10.1016/j.nanoen.2022.108079
- P. Zhu, Z. Yu, H. Sun, D. Zheng, Y. Zheng et al., 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv. Mater. 36(1), e2306653 (2024). https://doi.org/10.1002/adma.202306653
- J. Chen, C. Qiu, L. Zhang, B. Wang, P. Zhao et al., Wood-derived Fe cluster-reinforced asymmetric single-atom catalysts and weather-resistant organohydrogel for wide-temperature flexible Zn–air batteries. Energy Environ. Sci. 17(13), 4746–4757 (2024). https://doi.org/10.1039/d4ee01226g
- Y. Zhao, Q. Yuan, L. Yang, G. Liang, Y. Cheng et al., “Zero-strain” NiNb2O6 fibers for all-climate lithium storage. Nano-Micro Lett. 17(1), 15 (2024). https://doi.org/10.1007/s40820-024-01497-z
- J. Xu, B. Li, Z. Ma, X. Zhang, C. Zhu et al., Multifunctional film assembled from N-doped carbon nanofiber with Co-N4-O single atoms for highly efficient electromagnetic energy attenuation. Nano-Micro Lett. 16(1), 240 (2024). https://doi.org/10.1007/s40820-024-01440-2
- P. Zhang, M. Wei, K. Wang, H. Wang, Y. Zuo et al., Performance optimization of zinc-air batteries via nanomaterials. Energy Storage Mater. 75, 104109 (2025). https://doi.org/10.1016/j.ensm.2025.104109
- W. Su, Y. Zhang, H. Wang, M. Yang, Z. Niu, An ultrafast air self-charging zinc battery. Adv. Mater. 36(2), e2308042 (2024). https://doi.org/10.1002/adma.202308042
- Y. Huang, W. Liu, C. Lin, Q. Hou, S. Nie, Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries. Nano Energy 123, 109416 (2024). https://doi.org/10.1016/j.nanoen.2024.109416
- L. Li, X. Tang, B. Wu, B. Huang, K. Yuan et al., Advanced architectures of air electrodes in zinc-air batteries and hydrogen fuel cells. Adv. Mater. 36(13), e2308326 (2024). https://doi.org/10.1002/adma.202308326
- R.-B. Huang, M.-Y. Wang, J.-F. Xiong, H. Zhang, J.-H. Tian et al., Anode optimization strategies for zinc–air batteries. eScience 5(3), 100309 (2025). https://doi.org/10.1016/j.esci.2024.100309
- X. Bi, Y. Jiang, R. Chen, Y. Du, Y. Zheng et al., Rechargeable zinc–air versus lithium–air battery: from fundamental promises toward technological potentials. Adv. Energy Mater. 14(6), 2302388 (2024). https://doi.org/10.1002/aenm.202302388
- M. Yang, X. Shu, W. Pan, J. Zhang, Toward flexible zinc-air batteries with self-supported air electrodes. Small 17(48), e2006773 (2021). https://doi.org/10.1002/smll.202006773
- A.C. Tavares, Asymmetric zinc–air battery: challenges and opportunities for the air electrode. Chem. Catal. 2(9), 2132–2134 (2022). https://doi.org/10.1016/j.checat.2022.08.015
- X. Cui, Y. Liu, G. Han, M. Cao, L. Han et al., Wood-derived integral air electrode for enhanced interfacial electrocatalysis in rechargeable zinc–air battery. Small 17(38), 2101607 (2021). https://doi.org/10.1002/smll.202101607
- L. Zhong, C. Jiang, M. Zheng, X. Peng, T. Liu et al., Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 6(10), 3624–3633 (2021). https://doi.org/10.1021/acsenergylett.1c01678
- L. Li, Q. Cao, Y. Wu, Y. Zheng, H. Tang et al., Wood-derived continuously oriented three-phase interfacial channels for high-performance quasi-solid-state alkaline zinc batteries. Adv. Mater. 35(26), e2300132 (2023). https://doi.org/10.1002/adma.202300132
- L. Zhang, Y. Liu, S. Liu, L. Zhou, X. Wu et al., Mn-doped Co nanops on wood-derived monolithic carbon for rechargeable zinc–air batteries. J. Mater. Chem. A 11(42), 22951–22959 (2023). https://doi.org/10.1039/D3TA05023H
- S. Zhang, Z. Chen, Z. Xiong, Z. Wang, Z. Zhao et al., Electronic structure regulation of carbon atoms from wood for enhancing Zn–air battery performances. J. Mater. Chem. A 13(3), 2198–2207 (2025). https://doi.org/10.1039/d4ta07226j
- W. Li, F. Wang, Z. Zhang, S. Min, Graphitic carbon layer-encapsulated Co nanops embedded on porous carbonized wood as a self-supported chainmail oxygen electrode for rechargeable Zn-air batteries. Appl. Catal. B Environ. 317, 121758 (2022). https://doi.org/10.1016/j.apcatb.2022.121758
- X. Deng, Z. Jiang, Y. Chen, D. Dang, Q. Liu et al., Renewable wood-derived hierarchical porous, N-doped carbon sheet as a robust self-supporting cathodic electrode for zinc-air batteries. Chin. Chem. Lett. 34(1), 107389 (2023). https://doi.org/10.1016/j.cclet.2022.03.112
- P. Zhao, L. Zhang, J. Chen, C. Qiu, B. Wang et al., From wood to flexible Zn-air battery: Fe3O4 nanops synergistic single iron atoms on N-doped carbon nanosheets electrocatalyst and lignosulfonate-functionalized gel electrolyte. Chem. Eng. J. 484, 149415 (2024). https://doi.org/10.1016/j.cej.2024.149415
- Z. Chen, H. Chen, T. Li, X. Tian, K. Zhang et al., Defective wood-based chainmail electrocatalysts boost performances of seawater-medium Zn-air batteries. J. Energy Chem. 102, 134–143 (2025). https://doi.org/10.1016/j.jechem.2024.10.029
- L. Zheng, Y. Zhong, J. Cao, M. Liu, Y. Liao et al., Modulation of electronic synergy to enhance the intrinsic activity of Fe5Ni4S8 nanosheets in restricted space carbonized wood frameworks for efficient oxygen evolution reaction. Small 20(21), 2308928 (2024). https://doi.org/10.1002/smll.202308928
- P. Zhang, K. Sun, Y. Liu, B. Zhou, S. Li et al., Improving bifunctional catalytic activity of biochar via in situ growth of nickel-iron hydroxide as cathodic catalyst for zinc-air batteries. Biochar 5(1), 60 (2023). https://doi.org/10.1007/s42773-023-00259-1
- P. Zhang, Y. Liu, S. Wang, L. Zhou, T. Liu et al., Wood-derived monolithic catalysts with the ability of activating water molecules for oxygen electrocatalysis. Small 18(34), 2202725 (2022). https://doi.org/10.1002/smll.202202725
- M. Cao, Y. Liu, K. Sun, H. Li, X. Lin et al., Coupling Fe3C nanops and N-doping on wood-derived carbon to construct reversible cathode for Zn-air batteries. Small 18(26), e2202014 (2022). https://doi.org/10.1002/smll.202202014
- Y. Yang, N. Li, T. Lv, Z. Chen, Y. Liu et al., Natural wood-derived free-standing films as efficient and stable separators for high-performance lithium ion batteries. Nanoscale Adv. 4(7), 1718–1726 (2022). https://doi.org/10.1039/D2NA00097K
- J. Li, A. Wang, W. Xiang, S. Liu, L. Li et al., Direct synthesis of a lithium carboxymethyl cellulose binder using wood dissolving pulp for high-performance LiFePO4 cathodes in lithium-ion batteries. Bioresour. Technol. 401, 130711 (2024). https://doi.org/10.1016/j.biortech.2024.130711
- P. Li, T. Yuan, J. Qiu, H. Che, Q. Ma et al., A comprehensive review of layered transition metal oxide cathodes for sodium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 163, 100902 (2025). https://doi.org/10.1016/j.mser.2024.100902
- J.-E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal-organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36(16), e2312471 (2024). https://doi.org/10.1002/adma.202312471
- J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
- J.-E. Zhou, Z. Xu, Y. Li, X. Lin, Y. Wu et al., Oxygen-deficient metal–organic framework derivatives for advanced energy storage: multiscale design, application, and future development. Coord. Chem. Rev. 494, 215348 (2023). https://doi.org/10.1016/j.ccr.2023.215348
- Q. Huang, A. Zeb, Z. Xu, S. Sahar, J.-E. Zhou et al., Fe-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Coord. Chem. Rev. 494, 215335 (2023). https://doi.org/10.1016/j.ccr.2023.215335
- C. Zhang, S. Chou, Z. Guo, S.-X. Dou, Beyond lithium-ion batteries. Adv. Funct. Mater. 34(5), 2308001 (2024). https://doi.org/10.1002/adfm.202308001
- S.-K. Jung, I. Hwang, D. Chang, K.-Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
- Y. Shao, J. Xu, A. Amardeep, Y. Xia, X. Meng et al., Lithium-ion conductive coatings for nickel-rich cathodes for lithium-ion batteries. Small Methods 8(12), 2400256 (2024). https://doi.org/10.1002/smtd.202400256
- S. Zhou, Z. Tang, Z. Pan, Y. Huang, L. Zhao et al., Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat 2(3), 357–367 (2022). https://doi.org/10.1002/sus2.60
- H. Su, H. Yu, Composite-structure materials for Na-ion batteries. Small Meth 3(4), 1800205 (2019). https://doi.org/10.1002/smtd.201800205
- Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8(9), 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
- M. Li, H. Zhuo, Q. Jing, Y. Gu, Z. Liao et al., Low-temperature performance of Na-ion batteries. Carbon Energy 6(10), e546 (2024). https://doi.org/10.1002/cey2.546
- T. Jin, X. Ji, P.-F. Wang, K. Zhu, J. Zhang et al., High-energy aqueous sodium-ion batteries. Angew. Chem. Int. Ed. 60(21), 11943–11948 (2021). https://doi.org/10.1002/anie.202017167
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
- G. Zhou, L. Mo, C. Zhou, Y. Wu, F. Lai et al., Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. Chem. Eng. J. 420, 127597 (2021). https://doi.org/10.1016/j.cej.2020.127597
- C. Liu, T. Lei, F. Seidi, M. Ahmad, D. Cao et al., Multiscale wood-derived materials for advanced supercapacitors: from macro to micro and nano. Energy Storage Mater. 72, 103774 (2024). https://doi.org/10.1016/j.ensm.2024.103774
- Y. Yu, M. Li, J. Zhou, M. Sun, X. Sun et al., Structural designs of advanced wood-based thick electrodes for high-performance eco-supercapacitors. Nano Today 55, 102154 (2024). https://doi.org/10.1016/j.nantod.2024.102154
- Y. Wang, X. Lin, T. Liu, H. Chen, S. Chen et al., Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28(52), 1806207 (2018). https://doi.org/10.1002/adfm.201806207
- J. Cao, L. Lin, J. Zhang, F. Zhao, J. Shi et al., Biological treatment as a green approach for enhancing electrochemical performance of wood derived carbon based supercapacitor electrodes. J. Clean. Prod. 422, 138659 (2023). https://doi.org/10.1016/j.jclepro.2023.138659
- W. Xiong, L. Zhao, J. Ouyang, Y. Tian, L. Wang et al., Surface-modified composites of metal–organic framework and wood-derived carbon for high-performance supercapacitors. J. Colloid Interface Sci. 679, 243–252 (2025). https://doi.org/10.1016/j.jcis.2024.09.247
- W. Chen, Z. Li, F. Jiang, M. Luo, K. Yang et al., Water evaporation triggered self-assembly of MXene on non-carbonized wood with well-aligned channels as size-customizable free-standing electrode for supercapacitors. Energy Environ. Mater. 6(5), e12406 (2023). https://doi.org/10.1002/eem2.12406
- W. Chen, K. Yang, M. Luo, D. Zhang, Z. Li et al., Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors. EcoMat 5(1), e12271 (2023). https://doi.org/10.1002/eom2.12271
- X. Wang, J. Hu, H. Guan, X. Dai, M. Wu, Wood-based catalytic filter decorated with ZIF-67 for highly efficient and continuous organic pollutant removal. Chem. Eng. J. 479, 147580 (2024). https://doi.org/10.1016/j.cej.2023.147580
- H. Xia, Z. Zhang, J. Liu, Y. Deng, D. Zhang et al., Novel Fe-Mn-O nanosheets/wood carbon hybrid with tunable surface properties as a superior catalyst for Fenton-like oxidation. Appl. Catal. B Environ. 259, 118058 (2019). https://doi.org/10.1016/j.apcatb.2019.118058
- D. Xie, M. He, X. Li, J. Sun, J. Luo et al., Tree-inspired efficient solar evaporation and simultaneous in-situ purification of ultra-highly concentrated mixed volatile organic wastewater. Nano Energy 93, 106802 (2022). https://doi.org/10.1016/j.nanoen.2021.106802
- Y. Mao, L. Hu, Z.J. Ren, Engineered wood for a sustainable future. Matter 5(5), 1326–1329 (2022). https://doi.org/10.1016/j.matt.2022.04.013
- T. Yang, Y. Liu, G. Xia, X. Zhu, Y. Zhao, Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO2. J. Clean. Prod. 329, 129726 (2021). https://doi.org/10.1016/j.jclepro.2021.129726
- Y. Yu, N. Li, X. Lu, B. Yan, G. Chen et al., Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: performance and internal mechanism. J. Hazard. Mater. 421, 126735 (2022). https://doi.org/10.1016/j.jhazmat.2021.126735
- Y. Wang, W. Yao, Z. Li, H. Tan, C. Sun et al., Fe3C@Fe decorated carbonized wood fiber catalyst for organic dyes degradation: preparation, characterization and mechanism. Int. J. Biol. Macromol. 282, 137316 (2024). https://doi.org/10.1016/j.ijbiomac.2024.137316
- Z. Shen, X. Wang, D. Fan, X. Xu, Y. Lu, Wood–hydrogel composites coated with C3N4 photocatalyst for synchronous solar steam generation and photocatalytic degradation. J. Mater. Sci. 58(32), 13154–13164 (2023). https://doi.org/10.1007/s10853-023-08849-x
- B. Huo, J. Wang, Z. Wang, C. Liu, W. Hao et al., Ni-doped MoS2 embedded in natural wood containing porous cellulose for piezo-catalytic degradation of tetracycline. Int. J. Biol. Macromol. 233, 123589 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123589
- Y. Yu, Q. Zhang, L. Hao, H. Huo, M. Li et al., Heterogeneous Cu2O-Au nanocatalyst anchored on wood and its insight for synergistic photodegradation of organic pollutants. Environ. Res. 215(Pt 2), 114298 (2022). https://doi.org/10.1016/j.envres.2022.114298
- H. Fang, Q. Yu, D. Xie, Y. Cai, J. Sun et al., Flexible bifunctional wood-derived water filtration/photo-Fenton membrane for efficient purification of mixed organic wastewater. Colloids Surf A Physicochem Eng Asp 697, 134498 (2024). https://doi.org/10.1016/j.colsurfa.2024.134498
- X. Liu, Q. Lin, L. Zhao, J. Fang, J. Qi et al., Wood-supported nitrogen-doped carbon quantum dot @Cu2O composites for efficient photocatalytic degradation of dye wastewater. Cellulose 31(12), 7587–7600 (2024). https://doi.org/10.1007/s10570-024-06057-7
- F. Liang, Z. Liu, X. Jiang, J. Li, K. Xiao et al., NaOH-modified biochar supported Fe/Mn bimetallic composites as efficient peroxymonosulfate activator for enhance tetracycline removal. Chem. Eng. J. 454, 139949 (2023). https://doi.org/10.1016/j.cej.2022.139949
- S. Pang, C. Zhou, Y. Sun, K. Zhang, W. Ye et al., Natural wood-derived charcoal embedded with bimetallic iron/cobalt sites to promote ciprofloxacin degradation. J. Clean. Prod. 414, 137569 (2023). https://doi.org/10.1016/j.jclepro.2023.137569
- R.F. Beims, A. Kermanshahi-pour, C.C. Xu, Functionalizing natural wood and delignified wood into bio-adsorbents for removal of Cu2+ from water. Cellulose 30(12), 8037–8047 (2023). https://doi.org/10.1007/s10570-023-05381-8
- J. Jiang, Y. Shi, N.L. Ma, H. Ye, M. Verma et al., Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. Environ. Pollut. 340, 122830 (2024). https://doi.org/10.1016/j.envpol.2023.122830
- M. Keshvardoostchokami, F.L. Braghiroli, C.M. Neculita, A. Koubaa, Advances in modified wood-based adsorbents for contaminant removal: valorization methods, modification mechanisms, and environmental applications. Curr. For. Rep. 9(6), 444–460 (2023). https://doi.org/10.1007/s40725-023-00200-6
- Y. Zhang, X. Zhang, Z. Zhou, G. Liu, C. Wang, A review of the conversion of wood biomass into high-performance bulk biochar: pretreatment, modification, characterization, and wastewater application. Sep. Purif. Technol. 361, 131448 (2025). https://doi.org/10.1016/j.seppur.2025.131448
- B. Yue, Z. Pang, Y. Yu, J. Wu, J. Qu et al., Difunctional MOF-EDTA modified wood membrane for efficient water purification. Chem. Eng. J. 504, 158896 (2025). https://doi.org/10.1016/j.cej.2024.158896
- V.K.H. Bui, T.P. Nguyen, T.C. Phuong Tran, T.T. Nguyen Nguyen, T.N. Duong et al., Biochar-based fixed filter columns for water treatment: a comprehensive review. Sci. Total. Environ. 954, 176199 (2024). https://doi.org/10.1016/j.scitotenv.2024.176199
- A. Zia, M. Neupane, A. McGlone, R. He, R. Xin et al., Coupling metal-organic frameworks and wood-based carbon for water remediation. Nano Res. 17(6), 5661–5669 (2024). https://doi.org/10.1007/s12274-024-6490-z
- M. Li, Y. Sun, Y. Lei, G. Liu, H. Jiang et al., Nature-inspired ultrathin wood-based interfacial solar steam generators for high-efficiency water purification. Desalination 591, 118018 (2024). https://doi.org/10.1016/j.desal.2024.118018
- X. Ma, R. Su, Z. Zeng, L. Li, H. Wang et al., Wood-based solar-driven interfacial evaporators: design and application. Chem. Eng. J. 471, 144517 (2023). https://doi.org/10.1016/j.cej.2023.144517
- D. Jiang, Y. Dai, Y. Jiang, W. Yu, D. Ma et al., Polydopamine/Fe3O4 modified wood-based evaporator for efficient and continuous water purification. J. Colloid Interface Sci. 652, 1271–1281 (2023). https://doi.org/10.1016/j.jcis.2023.08.168
- Z. Yu, J. Hu, G. Liu, Y. Liu, S. Chang et al., Micronleaf-shape graphene interfaces on wood transverse sections as advanced photothermal evaporators for water purification. J. Mater. Sci. Technol. 193, 81–89 (2024). https://doi.org/10.1016/j.jmst.2024.01.023
- Z. Cui, J. Wu, H. Li, Y. Xu, T. Wu et al., A bifunctional wood membrane modified by MoS2/covalent organic framework heterojunctions for effective solar-driven water evaporation and contaminant degradation. Sci. China Chem. 67(6), 2111–2120 (2024). https://doi.org/10.1007/s11426-023-1961-3
- Y. Chen, R. Hou, L. Yang, C. Chen, J. Cui et al., Elastic, janus 3D evaporator with arch-shaped design for low-footprint and high-performance solar-driven zero-liquid discharge. Desalination 583, 117644 (2024). https://doi.org/10.1016/j.desal.2024.117644
- J. Khan, M.H. Arsalan, Solar power technologies for sustainable electricity generation–a review. Renew. Sustain. Energy Rev. 55, 414–425 (2016). https://doi.org/10.1016/j.rser.2015.10.135
- T. Li, H. Liu, X. Zhao, G. Chen, J. Dai et al., Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28(16), 1707134 (2018). https://doi.org/10.1002/adfm.201707134
- A.G. Saad, A. Gebreil, D.A. Kospa, S.A. El-Hakam, A.A. Ibrahim, Integrated solar seawater desalination and power generation via plasmonic sawdust-derived biochar: waste to wealth. Desalination 535, 115824 (2022). https://doi.org/10.1016/j.desal.2022.115824
- Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33(43), 2306947 (2023). https://doi.org/10.1002/adfm.202306947
- J. Gan, Q. Lin, Y. Huang, Y. Wu, W. Yu, Full-wood utilization strategy toward a directional luminescent solar concentrator. ACS Nano 17(23), 23512–23523 (2023). https://doi.org/10.1021/acsnano.3c06162
- N. Ali, S. Abbas, Y. Cao, H. Fazal, J. Zhu et al., Low cost, robust, environmentally friendly, wood supported 3D-hierarchical Cu3SnS4 for efficient solar powered steam generation. J. Colloid Interface Sci. 615, 707–715 (2022). https://doi.org/10.1016/j.jcis.2022.02.012
- A. Gnanasekaran, K. Rajaram, Rational design of different interfacial evaporators for solar steam generation: recent development, fabrication, challenges and applications. Renew. Sustain. Energy Rev. 192, 114202 (2024). https://doi.org/10.1016/j.rser.2023.114202
- G. Liu, T. Chen, J. Xu, G. Li, K. Wang, Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 8(2), 513–531 (2020). https://doi.org/10.1039/c9ta12211g
- X. Dai, H. Guan, X. Wang, M. Wu, P. Jiang et al., Apple leaf-inspired bilayered Janus wood evaporator with decoupled light-vapor interfaces for high-efficiency solar steam generation. Chem. Eng. J. 499, 155796 (2024). https://doi.org/10.1016/j.cej.2024.155796
- S. Cao, P. Rathi, X. Wu, D. Ghim, Y.-S. Jun et al., Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv. Mater. 33(28), e2000922 (2021). https://doi.org/10.1002/adma.202000922
- H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8(8), 1701616 (2018). https://doi.org/10.1002/aenm.201701616
- D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32(52), 2003722 (2020). https://doi.org/10.1002/adma.202003722
- K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55(28), 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
- M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29(32), 1901798 (2019). https://doi.org/10.1002/adfm.201901798
- V.-D. Dao, N.H. Vu, H.-L. Thi Dang, S. Yun, Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 85, 105979 (2021). https://doi.org/10.1016/j.nanoen.2021.105979
- J. Li, C. Chen, W. Gan, Z. Li, H. Xie et al., A bio-inspired, hierarchically porous structure with a decoupled fluidic transportation and evaporative pathway toward high-performance evaporation. J. Mater. Chem. A 9(15), 9745–9752 (2021). https://doi.org/10.1039/d0ta11385a
- S. Yang, X. Tao, W. Chen, J. Mao, H. Luo et al., Ionic hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 34(21), 2200693 (2022). https://doi.org/10.1002/adma.202200693
- J. Garemark, F. Ram, L. Liu, I. Sapouna, M.F. Cortes Ruiz et al., Advancing hydrovoltaic energy harvesting from wood through cell wall nanoengineering. Adv. Funct. Mater. 33(4), 2208933 (2023). https://doi.org/10.1002/adfm.202208933
- T. Xu, X. Ding, H. Cheng, G. Han, L. Qu, Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 36(12), 2209661 (2024). https://doi.org/10.1002/adma.202209661
- Y. Li, J. Cui, H. Shen, C. Liu, P. Wu et al., Useful spontaneous hygroelectricity from ambient air by ionic wood. Nano Energy 96, 107065 (2022). https://doi.org/10.1016/j.nanoen.2022.107065
- L. Huang, Y. Zhang, X. Song, D. Li, X. Chen et al., A moist-electric generator based on oxidized and aminated regenerated cellulose. Nano Energy 118, 108973 (2023). https://doi.org/10.1016/j.nanoen.2023.108973
- J. Zhang, Z. Hu, Y. Hou, C. Wu, W. Ding, Wood hydrogel for efficient moisture-electric generation. ACS Appl. Polym. Mater. 6(15), 8856–8865 (2024). https://doi.org/10.1021/acsapm.4c00959
- K. Zhang, L. Cai, A. Nilghaz, G. Chen, X. Wan et al., Enhancing output performance of surface-modified wood sponge-carbon black ink hygroelectric generator via moisture-triggered galvanic cell. Nano Energy 98, 107288 (2022). https://doi.org/10.1016/j.nanoen.2022.107288
- J. Zhang, Y. Hou, Y. Li, S. Hu, Chinese ink enabled natural wood for moist-induced electricity generation. J. Mater. Res. Technol. 17, 1822–1830 (2022). https://doi.org/10.1016/j.jmrt.2022.01.100
- X. Zhou, W. Zhang, C. Zhang, Y. Tan, J. Guo et al., Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl. Mater. Interfaces 12(9), 11232–11239 (2020). https://doi.org/10.1021/acsami.9b23380
- X. Piao, P. Zhang, J. Shen, C. Jin, J. Wang et al., Water-evaporation induced electricity generation inspired by natural tree transpiration. Sustain. Mater. Technol. 39, e00836 (2024). https://doi.org/10.1016/j.susmat.2024.e00836
- Q. Wei, W. Ge, Z. Yuan, S. Wang, C. Lu et al., Moisture electricity generation: mechanisms, structures, and applications. Nano Res. 16(5), 7496–7510 (2023). https://doi.org/10.1007/s12274-023-5465-9
- M.Y. Wong, A. Gautam, K. Lin, J. Chen, T.C. Ho et al., Sustainable high-performance density: nanoporous composite wood for water evaporation-induced electricity generation. Chem. Eng. J. 510, 161729 (2025). https://doi.org/10.1016/j.cej.2025.161729
- T. Hu, K. Zhang, W. Deng, W. Guo, Hydrovoltaic effects from mechanical-electric coupling at the water-solid interface. ACS Nano 18(35), 23912–23940 (2024). https://doi.org/10.1021/acsnano.4c07900
- C. Li, L. Wang, C. Fu, J. Yue, Y. Tao et al., Wear-resistant cellulosic triboelectric material for robust human-machine interface and high-performance self-powered sensing. Nano Energy 135, 110646 (2025). https://doi.org/10.1016/j.nanoen.2025.110646
- W. Ma, Y. Lin, C. Huang, M.A. Amin, S.M. El-Bahy et al., Fully wood-based high-performance triboelectric nanogenerator for smart home. Adv. Compos. Hybrid Mater. 7(4), 126 (2024). https://doi.org/10.1007/s42114-024-00937-z
- Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
- A.A. Jan, S. Kim, S. Kim, A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion. Soft Sci. 4(1), 10 (2024). https://doi.org/10.20517/ss.2023.54
- T. Du, Z. Chen, F. Dong, H. Cai, Y. Zou et al., Advances in green triboelectric nanogenerators. Adv. Funct. Mater. 34(24), 2313794 (2024). https://doi.org/10.1002/adfm.202313794
- M. Al Mahadi Hasan, T. Zhang, H. Wu, Y. Yang, Water droplet-based nanogenerators. Adv. Energy Mater. 12(37), 2201383 (2022). https://doi.org/10.1002/aenm.202201383
- N.R. Tanguy, M. Rana, A.A. Khan, X. Zhang, N. Tratnik et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 98, 107337 (2022). https://doi.org/10.1016/j.nanoen.2022.107337
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
- J. Sun, H. Guo, J. Ribera, C. Wu, K. Tu et al., Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano 14(11), 14665–14674 (2020). https://doi.org/10.1021/acsnano.0c05493
- S. Hao, J. Jiao, Y. Chen, Z.L. Wang, X. Cao, Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors. Nano Energy 75, 104957 (2020). https://doi.org/10.1016/j.nanoen.2020.104957
- J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10(1), 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
- M. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13(6), 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
- J. Sun, U. Schütz, K. Tu, S.M. Koch, G. Roman et al., Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy 102, 107670 (2022). https://doi.org/10.1016/j.nanoen.2022.107670
- R. Funayama, S. Hayashi, M. Terakawa, Laser-induced graphitization of lignin/PLLA composite sheets for biodegradable triboelectric nanogenerators. ACS Sustainable Chem. Eng. 11(7), 3114–3122 (2023). https://doi.org/10.1021/acssuschemeng.2c07510
- J. Liao, Y. Wang, S. Shi, C. Liu, Q. Sun et al., Flexible wood-based triboelectric nanogenerator for versatile self-powered sensing. Sustain. Mater. Technol. 38, e00771 (2023). https://doi.org/10.1016/j.susmat.2023.e00771
- X. Shi, P. Chen, K. Han, C. Li, R. Zhang et al., A strong, biodegradable, and recyclable all-lignocellulose fabricated triboelectric nanogenerator for self-powered disposable medical monitoring. J. Mater. Chem. A 11(22), 11730–11739 (2023). https://doi.org/10.1039/d3ta01763j
- T. Cheng, H. Zhang, K. Cao, Y. Jing, Y. Wu, First development of transparent wood-based triboelectric nanogenerator (TW-TENG): cooperative incorporation of transparency, aesthetic of wood, and superior triboelectric properties. Nano Energy 128, 109888 (2024). https://doi.org/10.1016/j.nanoen.2024.109888
- J. Sun, K. Tu, S. Büchele, S.M. Koch, Y. Ding et al., Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter 4(9), 3049–3066 (2021). https://doi.org/10.1016/j.matt.2021.07.022
- D. Park, J.-H. Hong, D. Choi, D. Kim, W.H. Jung et al., Biocompatible and mechanically-reinforced tribopositive nanofiber mat for wearable and antifungal human kinetic-energy harvester based on wood-derived natural product. Nano Energy 96, 107091 (2022). https://doi.org/10.1016/j.nanoen.2022.107091
- S. Ankanahalli Shankaregowda, R.F. Sagade Muktar Ahmed, C.B. Nanjegowda, J. Wang, S. Guan et al., Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy 66, 104141 (2019). https://doi.org/10.1016/j.nanoen.2019.104141
- N. Zhang, H. Gu, K. Lu, S. Ye, W. Xu et al., A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy 82, 105735 (2021). https://doi.org/10.1016/j.nanoen.2020.105735
- J. Bang, I.K. Moon, Y.P. Jeon, B. Ki, J. Oh, Fully wood-based green triboelectric nanogenerators. Appl. Surf. Sci. 567, 150806 (2021). https://doi.org/10.1016/j.apsusc.2021.150806
- M. Gu, Y. Chen, S. Gu, C. Wang, L. Chen, H. Shen, Wen, Z. Brightness-enhanced electroluminescence driven by triboelectric nanogenerators through permittivity manipulation and impedance matching. Nano Energy 98, 107308 (2022). https://doi.org/10.1016/j.nanoen.2022.107308
- D. Lee, J. Chae, S. Cho, JW. Kim, A. Ahmad, MR. Karim, & D. Choi, Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motion. Abstract Highlights Int. J. Extreme Manuf 6(4), 045502 (2024). https://doi.org/10.1088/2631-7990/ad3998
- O. Song, Y. Cho, S. Y. Joohoon, K. Cho, Solution-processing approach of nanomaterials toward an artificial sensory system. Abstract Highlights Int. J. Extreme. Manuf. 6(5) 052001 (2024). https://doi.org/10.1088/2631-7990/ad4c29
- Z. Li, A. Yu, Q. Zhang, & J. Zhai, Recent advances in fabricating high-performance triboelectric nanogenerators via modulating surface charge density. Abstract Highlights Int. J. Extreme. Manuf. 6(5), 052003 (2024). https://doi.org/10.1088/2631-7990/ad4f32
- P. Wu, C. Zhao, E. Cui, S. Xu, T. Liu, F. Wang, & X. Mu, Advances in magnetic-assisted triboelectric nanogenerators: structures materials and self-sensing systems. Abstract Highlights Int. J. Extreme. Manuf. 6(5) 052007 (2024). https://doi.org/10.1088/2631-7990/ad5bc6
- S. Yin, H. Li, W. Qian, M. A. M. Hasan, & Y. Yang, Non-contact intelligent sensor for recognizing transparent and naked-eye indistinguishable materials based on ferroelectric BiFeO3 thin films. Abstract Highlights Int. J. Extreme Manuf. 6(5), 055502 (2024). https://doi.org/10.1088/2631-7990/ad57a0
- X, Bai, D. Wang, L. Zhen, M. Cui, J. Liu, Zhao. N, B, Yang. Design and micromanufacturing technologies of focused
References
Y. Zhang, S. Ling, W. Chen, M.J. Buehler, D.L. Kaplan, Exploring nature’s toolbox: the role of biopolymers in sustainable materials science. Adv. Mater. 37(22), 2507822 (2025). https://doi.org/10.1002/adma.202507822
H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu et al., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016). https://doi.org/10.1021/acs.chemrev.6b00225
L. Zhang, H. Liu, B. Song, J. Gu, L. Li et al., Wood-inspired metamaterial catalyst for robust and high-throughput water purification. Nat. Commun. 15(1), 2046 (2024). https://doi.org/10.1038/s41467-024-46337-1
S. You, Q. Zhang, J. Liu, Q. Deng, Z. Sun et al., Hard carbon with an opened pore structure for enhanced sodium storage performance. Energy Environ. Sci. 17(21), 8189–8197 (2024). https://doi.org/10.1039/d4ee02519a
C.M. Clarkson, S.M. El Awad Azrak, E.S. Forti, G.T. Schueneman, R.J. Moon et al., Recent developments in cellulose nanomaterial composites. Adv. Mater. 33(28), 2000718 (2021). https://doi.org/10.1002/adma.202000718
X. Liu, C. Wan, X. Li, S. Wei, L. Zhang et al., Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment. Front. Environ. Sci. Eng. 15(4), 54 (2020). https://doi.org/10.1007/s11783-020-1346-6
F. Wang, J. Lee, L. Chen, G. Zhang, S. He et al., Inspired by wood: thick electrodes for supercapacitors. ACS Nano 17(10), 8866–8898 (2023). https://doi.org/10.1021/acsnano.3c01241
M. Schubert, G. Panzarasa, I. Burgert, Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123(5), 1889–1924 (2023). https://doi.org/10.1021/acs.chemrev.2c00360
C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5(9), 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
C. Chen, L. Berglund, I. Burgert, L. Hu, Wood nanomaterials and nanotechnologies. Adv. Mater. 33(28), 2006207 (2021). https://doi.org/10.1002/adma.202006207
O. Paris, G. Fritz-Popovski, D. Van Opdenbosch, C. Zollfrank, Recent progress in the replication of hierarchical biological tissues. Adv. Funct. Mater. 23(36), 4408–4422 (2013). https://doi.org/10.1002/adfm.201300217
S.K. Lengger, L. Neumaier, L. Haiden, M. Feuchter, T. Griesser et al., Laser-induced graphene formation on different wood species: dependence of electronic performance on intrinsic features of certain types of wood. Sustain. Mater. Technol. 40, e00936 (2024). https://doi.org/10.1016/j.susmat.2024.e00936
C. Chen, L. Hu, Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33(28), 2002890 (2021). https://doi.org/10.1002/adma.202002890
H. Wang, H. Wu, D. Ye, C. Zhao, Q. Wu et al., Micro-cylindrical/fibric electronic devices: materials, fabrication, health and environmental monitoring. Soft Sci. 4(4), 41 (2024). https://doi.org/10.20517/ss.2024.53
N.A. Zulkifli, W. Jeong, M. Kim, C. Kim, Y.H. Ko et al., 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation. Soft Sci. 4(2), 20 (2024). https://doi.org/10.20517/ss.2024.11
Q. Cheng, J. Li, Q. Zhang, Fibre computer enables more accurate recognition of human activity. Nano-Micro Lett. 17(1), 286 (2025). https://doi.org/10.1007/s40820-025-01809-x
Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
C. Ge, D. Xu, X. Feng, X. Yang, Z. Song et al., Recent advances in fibrous materials for hydroelectricity generation. Nano-Micro Lett. 17(1), 29 (2024). https://doi.org/10.1007/s40820-024-01537-8
X. Dong, R. Song, P. Wang, J. Tang, Y. Wang et al., Multiscale engineered waste wood ps toward a sustainable, scalable, and high-performance structural material. Adv. Funct. Mater. 34(9), 2308361 (2024). https://doi.org/10.1002/adfm.202308361
S. Guo, Y. Zhang, Z. Yu, M. Dai, X. Liu et al., Leaf-based energy harvesting and storage utilizing hygroscopic iron hydrogel for continuous power generation. Nat. Commun. 16(1), 5267 (2025). https://doi.org/10.1038/s41467-025-60341-z
Y.-J. Park, Y.-I. Ryu, M.-K. Choi, K.-S. Kim, S.-K. Kang, Controlling the lifetime of biodegradable electronics: from dissolution kinetics to trigger acceleration. Soft Sci. 4(2), 16 (2024). https://doi.org/10.20517/ss.2024.06
S.J. Yoon, J.T. Park, Y.K. Lee, The neuromorphic computing for biointegrated electronics. Soft Sci. 4(3), 30 (2024). https://doi.org/10.20517/ss.2024.12
H. Zhong, Q. Huang, M. Zou, F. Li, Y. Liu et al., From food to hard carbon: citric acid enhanced biomass-derived anodes for high-performance sodium storage. Chem. Eng. J. 508, 160879 (2025). https://doi.org/10.1016/j.cej.2025.160879
Y. Liu, S.-G. Han, X. Li, Y. Luo, Y. Wu et al., Manganese dioxide cathode materials for aqueous zinc ion battery: Development, challenges and strategies. EnergyChem 7(3), 100152 (2025). https://doi.org/10.1016/j.enchem.2025.100152
H. Dong, S. Wei, W. Chen et al., Bioinspired lignocellulose foam: exceptional toughness and thermal insulation. ACS Nano 19(12), 11712–11727 (2025). https://doi.org/10.1021/acsnano.4c11945
R. Zhang, D. Chen, M. Hummelgård, N. Blomquist, C. Dahlström et al., Engineering triboelectric paper for energy harvesting and smart sensing. Adv. Mater. 37(22), 2416641 (2025). https://doi.org/10.1002/adma.202416641
H. Shan, P. Poredoš, H. Qu, X. Yang, M. Zhou et al., Integrating rooftop agriculture and atmospheric water harvesting for water-food production based on hygroscopic manganese complex. Adv. Funct. Mater. 34(38), 2402839 (2024). https://doi.org/10.1002/adfm.202402839
Y. Zhou, Y. Zhang, Y. Pang, H. Guo, Y. Guo et al., Thermally conductive Ti3C2Tx fibers with superior electrical conductivity. Nano-Micro Lett. 17(1), 235 (2025). https://doi.org/10.1007/s40820-025-01752-x
Q. Huang, T. Xie, Y. Luo, J.-E. Zhou, Y. Wu et al., A comprehensive review on zinc-based MOFs and their derivatives for alkali-ion batteries: synthesis, applications, and future prospects. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508749
F. Sheng, C. Zhao, B. Zhang, Y. Tan, K. Dong, Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare. Soft Sci. 4(1), 2 (2024). https://doi.org/10.20517/ss.2023.35
J. Tu, M. Wang, W. Li, J. Su, Y. Li et al., Electronic skins with multimodal sensing and perception. Soft Sci. 3(3), 24 (2023). https://doi.org/10.20517/ss.2023.15
Y. Xi, P. Tan, Z. Li, Y. Fan, Self-powered wearable IoT sensors as human-machine interfaces. Soft Sci. 3(3), 26 (2023). https://doi.org/10.20517/ss.2023.13
Z. Ma, B.L. Khoo, Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare. Soft Sci. 4(3), 26 (2024). https://doi.org/10.20517/ss.2024.20
D. Tao, X. Wen, C. Yang, K. Yan, Z. Li et al., Controlled twill surface structure endowing nanofiber composite membrane excellent electromagnetic interference shielding. Nano-Micro Lett. 16(1), 236 (2024). https://doi.org/10.1007/s40820-024-01444-y
T. Keplinger, X. Wang, I. Burgert, Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J. Mater. Chem. A 7(7), 2981–2992 (2019). https://doi.org/10.1039/c8ta10711d
J. Wang, D. Zhang, F. Chu, Wood-derived functional polymeric materials. Adv. Mater. 33(28), 2001135 (2021). https://doi.org/10.1002/adma.202001135
X. Han, C. Hao, Y. Peng, H. Yu, T. Zhang et al., Novel cellulosic fiber composites with integrated multi-band electromagnetic interference shielding and energy storage functionalities. Nano-Micro Lett. 17(1), 122 (2025). https://doi.org/10.1007/s40820-025-01652-0
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
X. Hu, R. Yu, F. Wang, Z. Liu, H. Yang et al., Fabrication, functionalities and applications of transparent wood: a review. Adv. Funct. Mater. 33(37), 2303278 (2023). https://doi.org/10.1002/adfm.202303278
S. He, X. Zhao, E.Q. Wang, G.S. Chen, P.-Y. Chen et al., Engineered wood: sustainable technologies and applications. Annu. Rev. Mater. Res. 53, 195–223 (2023). https://doi.org/10.1146/annurev-matsci-010622-105440
Z. Wang, X.-F. Zhang, X. Kong, J. Yao, Top-down fabrication of wood hydrogels: from preparation to application. Chem. Eng. J. 490, 151518 (2024). https://doi.org/10.1016/j.cej.2024.151518
D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14(1), 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
Y. Zhu, L. Li, Wood of trees: cellular structure, molecular formation, and genetic engineering. J. Integr. Plant Biol. 66(3), 443–467 (2024). https://doi.org/10.1111/jipb.13589
X. Chen, Q. Zhu, B. Jiang, D. Li, X. Song et al., Research progress of wood and lignocellulose in sustainable piezoelectric systems. Nano Energy 126, 109650 (2024). https://doi.org/10.1016/j.nanoen.2024.109650
S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14(1), 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
H.A.M. Saeed, W. Xu, H. Yang, The application of cellulosic-based materials on interfacial solar steam generation for highly efficient wastewater purification: a review. Carbon Energy 6(9), e540 (2024). https://doi.org/10.1002/cey2.540
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
F. Guo, Z. Ren, S. Wang, Y. Xie, J. Pan et al., Recent progress of electrospun nanofiber-based composite materials for monitoring physical, physiological, and body fluid signals. Nano-Micro Lett. 17(1), 302 (2025). https://doi.org/10.1007/s40820-025-01804-2
S. Tanpichai, A. Boonmahitthisud, N. Soykeabkaew, L. Ongthip, Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr. Polym. 286, 119192 (2022). https://doi.org/10.1016/j.carbpol.2022.119192
Q. Long, G. Jiang, J. Zhou, D. Zhao, P. Jia et al., Cellulose ionic gel and its sustainable thermoelectric devices–Design, applications and prospects. Nano Energy 120, 109130 (2024). https://doi.org/10.1016/j.nanoen.2023.109130
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
Y. Yang, X. Kang, Y. Yang, H. Ye, J. Jiang et al., Research progress in green preparation of advanced wood-based composites. Adv. Compos. Hybrid Mater. 6(6), 202 (2023). https://doi.org/10.1007/s42114-023-00770-w
J. Li, C. Chen, J.Y. Zhu, A.J. Ragauskas, L. Hu, In situ wood delignification toward sustainable applications. Acc. Mater. Res. 2(8), 606–620 (2021). https://doi.org/10.1021/accountsmr.1c00075
W. Li, W. Zhang, Y. Xu, G. Wang, T. Xu et al., Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality. Nano Energy 128, 109912 (2024). https://doi.org/10.1016/j.nanoen.2024.109912
Q. Fu, Y. Chen, M. Sorieul, Wood-based flexible electronics. ACS Nano 14(3), 3528–3538 (2020). https://doi.org/10.1021/acsnano.9b09817
R. Xia, W. Zhang, Y. Yang, J. Zhao, Y. Liu et al., Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation. J. Clean. Prod. 296, 126598 (2021). https://doi.org/10.1016/j.jclepro.2021.126598
J. Wu, T. Shen, S. Li, Y. Wu, L. Cai et al., Sustainable transparent wood focusing on lignin decolorization methods, polymer impregnation techniques and applications in functional buildings: a review. Int. J. Biol. Macromol. 302, 140554 (2025). https://doi.org/10.1016/j.ijbiomac.2025.140554
R. Das, T. Lindström, P.R. Sharma, K. Chi, B.S. Hsiao, Nanocellulose for sustainable water purification. Chem. Rev. 122(9), 8936–9031 (2022). https://doi.org/10.1021/acs.chemrev.1c00683
C. Liu, P. Luan, Q. Li, Z. Cheng, P. Xiang et al., Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mater. 33(28), 2001654 (2021). https://doi.org/10.1002/adma.202001654
M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai et al., Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8(4), 1701028 (2018). https://doi.org/10.1002/aenm.201701028
J. Aslam, M.A. Waseem, X.-M. Lu, W. Sun, Y. Wang, From biochar to battery electrodes: a pathway to green lithium and sodium-ion battery systems. Chem. Eng. J. 505, 159556 (2025). https://doi.org/10.1016/j.cej.2025.159556
R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
S. Bai, L. Ruan, H. Chen, Y. Du, H. Deng et al., Laser-induced graphene: carbon precursors, fabrication mechanisms, material characteristics, and applications in energy storage. Chem. Eng. J. 493, 152805 (2024). https://doi.org/10.1016/j.cej.2024.152805
Z. Wo, X. Sun, H. Sun, Y. Su, Y. Xie et al., All-in-one design of wood evaporator with highly-efficient salt resistance for sustainable solar desalination and contaminated water purification. Chem. Eng. J. 507, 160715 (2025). https://doi.org/10.1016/j.cej.2025.160715
H. Han, X. Meng, Hydrothermal preparation of C3N4 on carbonized wood for photothermal-photocatalytic water splitting to efficiently evolve hydrogen. J. Colloid Interface Sci. 650, 846–856 (2023). https://doi.org/10.1016/j.jcis.2023.07.059
Z. Chen, W. Wei, X. Xu, X. Gu, C. Huang et al., Reconstructed anti-corrosive and active surface on hierarchically porous carbonized wood for efficient overall seawater electrolysis. Sci. Bull. 69(15), 2337–2341 (2024). https://doi.org/10.1016/j.scib.2024.05.044
A. Geng, L. Xu, L. Gan, C. Mei, L. Wang et al., Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal. Chemosphere 250, 126291 (2020). https://doi.org/10.1016/j.chemosphere.2020.126291
R. Guo, Z. Yang, X. Pan, X. Ma, Y. Qiu et al., NiS nanosheets decorated on hollow carbon spheres from liquefied wood for supercapacitors. Langmuir 39(19), 6924–6931 (2023). https://doi.org/10.1021/acs.langmuir.3c00627
Z. Huang, Z. Cao, Y.-F. Chen, M. Zhu, An ultrastrong and ultraflexible wood veneer via fiber interaction enhancement and defect reduction. ACS Nano 19(18), 17385–17392 (2025). https://doi.org/10.1021/acsnano.4c17158
M. Zou, Y. Chen, L. Chang, X. Cheng, L. Gao et al., Toward 90 μm superthin transparent wood film impregnated with quantum dots for color-converting materials. ACS Sustainable Chem. Eng. 10(6), 2097–2106 (2022). https://doi.org/10.1021/acssuschemeng.1c07013
Y. Huang, K. Jiang, Y. He, J. Hu, K. Dyer et al., A natural lignification inspired super-hard wood-based composites with extreme resilience. Adv. Mater. 37(19), 2502266 (2025). https://doi.org/10.1002/adma.202502266
M. Gu, Y. Zhong, J. Hu, T. Zhang, S. Mei et al., Bio-inspired nanoengineered wood for scalable monolithic gas sensor fabrication. Adv. Mater. (2025). https://doi.org/10.1002/adma.202507829
J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14(1), 6024 (2023). https://doi.org/10.1038/s41467-023-39637-5
Q. Fu, L. Medina, Y. Li, F. Carosio, A. Hajian et al., Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Appl. Mater. Interfaces 9(41), 36154–36163 (2017). https://doi.org/10.1021/acsami.7b10008
F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu et al., Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6(14), 1600377 (2016). https://doi.org/10.1002/aenm.201600377
M. Yu, G.-J. Zhang, T. Saunders, Wood-derived ultra-high temperature carbides and their composites: a review. Ceram. Int. 46(5), 5536–5547 (2020). https://doi.org/10.1016/j.ceramint.2019.11.104
L.-L. Lu, Y.-Y. Lu, Z.-J. Xiao, T.-W. Zhang, F. Zhou et al., Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 30(20), e1706745 (2018). https://doi.org/10.1002/adma.201706745
Z. Tang, Z. Pei, Z. Wang, H. Li, J. Zeng et al., Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 130, 532–543 (2018). https://doi.org/10.1016/j.carbon.2018.01.055
Y. Gao, K. Zhang, X. Du, G. Liu, Y. Du et al., Wood-derived closed pore hard carbon encapsulated micro-sized silicon anode design for long-term practical lithium-ion battery. Chem. Eng. J. 508, 160846 (2025). https://doi.org/10.1016/j.cej.2025.160846
Y. Chen, Y. Liao, Y. Ding, Y. Wu, L. Li et al., Synchronously reconfiguring closed pore and interlayer spacing of wood-derived hard carbon via hot-pressing for advanced sodium-ion batteries. Green Chem. 27(27), 8143–8153 (2025). https://doi.org/10.1039/d5gc00409h
L.X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji et al., Laser-induced graphene fibers. Carbon 126, 472–479 (2018). https://doi.org/10.1016/j.carbon.2017.10.036
R. Kumar, R. Pandey, E. Joanni, R. Savu, Laser-induced and catalyst-free formation of graphene materials for energy storage and sensing applications. Chem. Eng. J. 497, 154968 (2024). https://doi.org/10.1016/j.cej.2024.154968
Y. Yue, X. Li, Z. Zhao, H. Wang, X. Guo, Stretchable flexible sensors for smart tires based on laser-induced graphene technology. Soft Sci. 3(2), 13 (2023). https://doi.org/10.20517/ss.2023.02
R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31(1), 1803621 (2019). https://doi.org/10.1002/adma.201803621
J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). https://doi.org/10.1038/ncomms6714
Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
M. Wang, H.K. Nam, D. Yang, Y. Lee, Y. Lu et al., Green smart multifunctional wooden roofs enabled by single-step hydrophobic laser-induced graphene fabrication. Carbon 228, 119373 (2024). https://doi.org/10.1016/j.carbon.2024.119373
C.H. Dreimol, H. Guo, M. Ritter, T. Keplinger, Y. Ding et al., Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nat. Commun. 13(1), 3680 (2022). https://doi.org/10.1038/s41467-022-31283-7
T.D. Le, S. Park, J. An, P.S. Lee, Y.-J. Kim, Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 29(33), 1902771 (2019). https://doi.org/10.1002/adfm.201902771
R. Miyakoshi, S. Hayashi, M. Terakawa, Simultaneous laser-based graphitization and microstructuring of bamboo for supercapacitors derived from renewable resources. RSC Adv. 12(46), 29647–29652 (2022). https://doi.org/10.1039/D2RA05641K
H.K. Nam, J. Choi, T. Jing, D. Yang, Y. Lee et al., Laser-induced graphene formation on recycled woods for green smart furniture. EcoMat 6(4), e12447 (2024). https://doi.org/10.1002/eom2.12447
Y.-R. Kim, H.K. Nam, Y. Lee, D. Yang, T.D. Le et al., Green supercapacitor patterned by synthesizing MnO/laser-induced-graphene hetero-nanostructures on wood via femtosecond laser pulses. Biochar 6(1), 36 (2024). https://doi.org/10.1007/s42773-024-00320-7
A. Imbrogno, J. Islam, C. Santillo, R. Castaldo, L. Sygellou et al., Laser-induced graphene supercapacitors by direct laser writing of cork natural substrates. ACS Appl. Electron. Mater. 4(4), 1541–1551 (2022). https://doi.org/10.1021/acsaelm.1c01202
M. Zhu, J. Song, T. Li, A. Gong, Y. Wang et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(26), 5181–5187 (2016). https://doi.org/10.1002/adma.201600427
Y. Li, Q. Fu, S. Yu, M. Yan, L. Berglund, Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol 17(4), 1358–1364 (2016). https://doi.org/10.1021/acs.biomac.6b00145
Y. Li, Q. Fu, R. Rojas, M. Yan, M. Lawoko et al., Lignin-retaining transparent wood. Chemsuschem 10(17), 3445–3451 (2017). https://doi.org/10.1002/cssc.201701089
C. Montanari, Y. Li, H. Chen, M. Yan, L.A. Berglund, Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl. Mater. Interfaces 11(22), 20465–20472 (2019). https://doi.org/10.1021/acsami.9b05525
K. Xu, Y. Jiao, J. Li, H. Xiao, Q. Fu, FeP nanop embedded in N, P-doped 3D porous wood-derived carbon aerogel for oxygen reduction reaction. Carbon 228, 119408 (2024). https://doi.org/10.1016/j.carbon.2024.119408
Y. Yu, W.-H. Chen, X. Wang, X. Sun, Z. Jiang et al., Self-assembled MXene supported on carbonization-free wood for a symmetrical all-wood eco-supercapacitor. ACS Appl. Mater. Interfaces 16(28), 36322–36332 (2024). https://doi.org/10.1021/acsami.4c05129
J. Wu, T. Li, Q. Zhao, X. Wen, L. Liu et al., Flexible wood-based composite for solar water evaporation and waste heat power generation. Sustain. Mater. Technol. 40, e00950 (2024). https://doi.org/10.1016/j.susmat.2024.e00950
J. He, W. Han, H. Jiang, T. Zhang, X. Wang et al., Enhancing thermal localization efficiency in a wood-based solar steam generator with inverted-pyramid structure. Desalination 574, 117271 (2024). https://doi.org/10.1016/j.desal.2023.117271
K. Zhang, X. Li, C. Yan, R. Shi, Z. Fang et al., All-wood-based ionic power generator with dual functions for alkaline wastewater reuse and energy harvesting. ACS Nano 18(14), 10259–10269 (2024). https://doi.org/10.1021/acsnano.4c00990
J. Lin, Z. Zhang, X. Lin, X. Cai, S. Fu et al., All wood-based water evaporation-induced electricity generator. Adv. Funct. Mater. 34(30), 2314231 (2024). https://doi.org/10.1002/adfm.202314231
C. Wang, S. Tang, B. Li, J. Fan, J. Zhou, Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional evaporation-driven electrical generation. Chem. Eng. J. 455, 140568 (2023). https://doi.org/10.1016/j.cej.2022.140568
Y. Long, J. Zhang, H. Bian, T. Xu, S. Wang et al., In-situ synthesis of magnetic nanops/wood-structural holocellulose hybrid for metal ions adsorption. Carbohydr. Polym. 357, 123436 (2025). https://doi.org/10.1016/j.carbpol.2025.123436
M. Zhang, D. Zheng, L. Shi, C. Zhang, H. Fei et al., Construction of magnetic and photothermal wood membrane with asymmetric wettabilities and wind drift resistance for solar-driven seawater desalination and purification. Chem. Eng. J. 493, 152878 (2024). https://doi.org/10.1016/j.cej.2024.152878
X. Wang, L. Sun, Y. Shen, J. Hou, Y. Sun et al., Self-rotating wood-based floating solar-driven interfacial evaporator for continuous and high-efficiency desalination. Chem. Eng. J. 509, 161363 (2025). https://doi.org/10.1016/j.cej.2025.161363
Y. Liu, Y. Miao, Z. Huang, R. Wang, Y. Peng et al., A lignin-wood Janus membrane with three-dimensional interconnected layered micro/nano channels for on-demand separation of surfactant-stabilized oil/water emulsions. Desalination 606, 118772 (2025). https://doi.org/10.1016/j.desal.2025.118772
S. Kim, K. Kim, G. Jun, W. Hwang, Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14(12), 17233–17240 (2020). https://doi.org/10.1021/acsnano.0c07206
K. Wang, X. Liu, Y. Tan, W. Zhang, S. Zhang et al., Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem. Eng. J. 371, 769–780 (2019). https://doi.org/10.1016/j.cej.2019.04.108
Z. Qiu, F. Yu, D. Xu, Z. Wang, J. Huang et al., Ultrafast self-propelling directionally water transporting wood via cell wall reshaping for water manipulation. Chem. Eng. J. 455, 140563 (2023). https://doi.org/10.1016/j.cej.2022.140563
Y. Guo, J. Zhang, C. Wang, M. Liu, J. You et al., Green pretreatment of lignocellulosic biomasses via deep eutectic solvents. Sustain. Chem. Pharm. 39, 101569 (2024). https://doi.org/10.1016/j.scp.2024.101569
P. Li, T. Li, S. Wu, Process parameters and product characterization for efficient extraction of lignin with deep eutectic solvents: a review. Int. J. Biol. Macromol. 280, 136053 (2024). https://doi.org/10.1016/j.ijbiomac.2024.136053
I.A. Lawal, M. Klink, P. Ndungu, Deep eutectic solvent as an efficient modifier of low-cost adsorbent for the removal of pharmaceuticals and dye. Environ. Res. 179, 108837 (2019). https://doi.org/10.1016/j.envres.2019.108837
Y. Huang, F. Feng, J. Jiang, Y. Qiao, T. Wu et al., Green and efficient extraction of rutin from Tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 221, 1400–1405 (2017). https://doi.org/10.1016/j.foodchem.2016.11.013
Z.-J. He, K. Chen, Z.-H. Liu, B.-Z. Li, Y.-J. Yuan, Valorizing renewable cellulose from lignocellulosic biomass toward functional products. J. Clean. Prod. 414, 137708 (2023). https://doi.org/10.1016/j.jclepro.2023.137708
O. Długosz, M. Banach, Green methods for obtaining deep eutectic solvents (DES). J. Clean. Prod. 434, 139914 (2024). https://doi.org/10.1016/j.jclepro.2023.139914
S. Behera, R. Arora, N. Nandhagopal, S. Kumar, Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014). https://doi.org/10.1016/j.rser.2014.04.047
F. Shen, J. Xu, J. Yan, S. Wu, C. He et al., Facile fabrication of functionalized wood evaporator through deep eutectic solvent delignification for efficient solar-driven water purification. J. Environ. Chem. Eng. 11(6), 111234 (2023). https://doi.org/10.1016/j.jece.2023.111234
Y. Wang, Q. Liu, C. Yan, G. Song, W.S. Price et al., Deep eutectic solvent-driven mild lignocellulose pretreatment: unlocking lignin valorization and carbohydrate digestibility. Chem. Eng. J. 504, 158825 (2025). https://doi.org/10.1016/j.cej.2024.158825
C.-W. Zhang, S.-Q. Xia, P.-S. Ma, Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol. 219, 1–5 (2016). https://doi.org/10.1016/j.biortech.2016.07.026
Z. Guo, Z. Ling, C. Wang, X. Zhang, F. Xu, Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue. Bioresour. Technol. 265, 334–339 (2018). https://doi.org/10.1016/j.biortech.2018.06.027
Q. Liu, X. Zhao, D. Yu, H. Yu, Y. Zhang et al., Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin. Green Chem. 21(19), 5291–5297 (2019). https://doi.org/10.1039/C9GC02306B
K. Kohli, S. Katuwal, A. Biswas, B.K. Sharma, Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour. Technol. 303, 122897 (2020). https://doi.org/10.1016/j.biortech.2020.122897
G. Wu, Y. Cheng, C. Huang, C. Yong, Y. Fu, Deep eutectic solvent engineering: a novel ternary system for efficient lignocellulose extraction. Green Chem. 27(5), 1556–1569 (2025). https://doi.org/10.1039/D4GC05138F
Y. Fan, H. Ji, X. Ji, Z. Tian, J. Chen, A deep eutectic solvent with a lignin stabilization and functionalization for lignocellulosic biomass pretreatment. Chem. Eng. J. 499, 156482 (2024). https://doi.org/10.1016/j.cej.2024.156482
I. Gómez-Cruz, N. Seixas, J. Labidi, E. Castro, A.J.D. Silvestre et al., Delignification of olive tree pruning using a ternary eutectic solvent for enhanced saccharification and isolation of a unique lignin fraction. ACS Sustainable Chem. Eng. 12(41), 15012–15023 (2024). https://doi.org/10.1021/acssuschemeng.4c03693
C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15(1), 13 (2022). https://doi.org/10.1007/s40820-022-00986-3
S. Zhu, S. Kumar Biswas, Z. Qiu, Y. Yue, Q. Fu et al., Transparent wood-based functional materials via a top-down approach. Prog. Mater. Sci. 132, 101025 (2023). https://doi.org/10.1016/j.pmatsci.2022.101025
Y. Wang, Y. Zhang, P. Xing, X. Li, Q. Du et al., Self-encapsulation of high-entropy alloy nanops inside carbonized wood for highly durable electrocatalysis. Adv. Mater. 36(28), 2402391 (2024). https://doi.org/10.1002/adma.202402391
Z. Shi, C. Mao, L. Zhong, J. Peng, M. Liu et al., Mo-doped Ni3S4 nanosheets grown on carbonized wood as highly efficient and durable electrocatalysts for water splitting. Appl. Catal. B Environ. 339, 123123 (2023). https://doi.org/10.1016/j.apcatb.2023.123123
D. Łukawski, P. Hochmańska-Kaniewska, D. Janiszewska-Latterini, A. Lekawa-Raus, Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives. Wood Sci. Technol. 57(5), 989–1037 (2023). https://doi.org/10.1007/s00226-023-01484-4
M. Lazari, F. Elmi, Structural study of coated wood with superhydrophobic chitosan/silica hybrid nanocomposite in seawater. Prog. Org. Coat. 186, 108076 (2024). https://doi.org/10.1016/j.porgcoat.2023.108076
S. Wu, F. Shen, F. Yang, L. Chen, M. Huang et al., All-biomass-based solar steam generator with deep eutectic solvent lignin porous carbon/silver nanop coatings for efficient water evaporation. ACS Appl. Nano Mater. 7(14), 16564–16574 (2024). https://doi.org/10.1021/acsanm.4c02563
Z. Xiao, R. Ai, Y. Wang, L. Xu, J. Li, Preparation and superhydrophobicity of nano-Al-coated wood by magnetron sputtering based on glow-discharge plasma. Forests 14(9), 1761 (2023). https://doi.org/10.3390/f14091761
Y. Zhang, Y. Huang, M.-C. Li, S. Zhang, W. Zhou et al., Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360 (2023). https://doi.org/10.1016/j.cej.2022.139360
R. Bansal, H.C. Barshilia, K.K. Pandey, Nanotechnology in wood science: innovations and applications. Int. J. Biol. Macromol. 262, 130025 (2024). https://doi.org/10.1016/j.ijbiomac.2024.130025
J. Sun, M. Shen, A.-J. Chang, C. Liang, C. Xiong et al., Cascade protection strategy for anchoring atomic FeN3 sites within defect-rich wood carbon aerogel for high-performance Zn-air batteries and versatile application. Chem. Eng. J. 503, 158551 (2025). https://doi.org/10.1016/j.cej.2024.158551
M.J. Ahmed, A. Sánchez-Ferrer, Wood-supported cationic polyelectrolyte membranes from a reactive ionic liquid for water detoxification. Chem. Eng. J. 505, 158841 (2025). https://doi.org/10.1016/j.cej.2024.158841
W. Lu, D. Jiang, Z. Wang, X. Zhang, Q. Ding et al., Simultaneous efficient evaporation and stable electricity generation enabled by a wooden evaporator based on composite photothermal effect. Chem. Eng. J. 496, 154361 (2024). https://doi.org/10.1016/j.cej.2024.154361
L.-H. Xu, Q. Wang, L. Hu, D. Shen, S. Chu et al., Engineering asymmetric bimetallic CoM (M = Ni, Fe, Mn, Cu) nanops encapsulated in freestanding wood-derived carbon electrodes for enhanced ORR kinetics in zinc-air batteries. Small 21(5), e2410290 (2025). https://doi.org/10.1002/smll.202410290
B. Luo, C. Cai, T. Liu, X. Meng, X. Zhuang et al., Multiscale structural nanocellulosic triboelectric aerogels induced by hofmeister effect. Adv. Funct. Mater. 33(42), 2306810 (2023). https://doi.org/10.1002/adfm.202306810
W. Cheng, Y. Zhu, G. Jiang, K. Cao, S. Zeng et al., Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 138, 101152 (2023). https://doi.org/10.1016/j.pmatsci.2023.101152
C. Cai, T. Liu, X. Meng, B. Luo, M. Chi et al., Lightweight and mechanically robust cellulosic triboelectric materials for wearable self-powered rehabilitation training. ACS Nano 19(1), 396–405 (2025). https://doi.org/10.1021/acsnano.4c08445
W. Zhang, X. Chen, J. Zhao, X. Wang, X. Li et al., Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity. Nano Energy 108, 108196 (2023). https://doi.org/10.1016/j.nanoen.2023.108196
M. Shi, X. Han, W. Qu, M. Jiang, Q. Li et al., Nanocellulose-derived hierarchical carbon framework-supported P-doped MoO2 nanops for optimizing redox kinetics in lithium-sulfur batteries. Adv. Mater. 37(22), e2419918 (2025). https://doi.org/10.1002/adma.202419918
W. He, B. Wei, S. Liang, R. Wang, Q. Ji et al., Highly nanostructured and carboxylated wood aerogel-based adsorption membrane reconstructed by grafting of polyacrylic acid for efficient removal of heavy-metal ions. Chem. Eng. J. 493, 152411 (2024). https://doi.org/10.1016/j.cej.2024.152411
H. Kong, Y. Li, J. Yan, X. Liu, M. Xiang et al., Enhancing electricity generation from water evaporation through cellulose-based multiscale fibers network. Chem. Eng. J. 498, 155872 (2024). https://doi.org/10.1016/j.cej.2024.155872
Y. Qin, W. Zhang, Y. Liu, J. Zhao, J. Yuan et al., Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106, 108079 (2023). https://doi.org/10.1016/j.nanoen.2022.108079
P. Zhu, Z. Yu, H. Sun, D. Zheng, Y. Zheng et al., 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv. Mater. 36(1), e2306653 (2024). https://doi.org/10.1002/adma.202306653
J. Chen, C. Qiu, L. Zhang, B. Wang, P. Zhao et al., Wood-derived Fe cluster-reinforced asymmetric single-atom catalysts and weather-resistant organohydrogel for wide-temperature flexible Zn–air batteries. Energy Environ. Sci. 17(13), 4746–4757 (2024). https://doi.org/10.1039/d4ee01226g
Y. Zhao, Q. Yuan, L. Yang, G. Liang, Y. Cheng et al., “Zero-strain” NiNb2O6 fibers for all-climate lithium storage. Nano-Micro Lett. 17(1), 15 (2024). https://doi.org/10.1007/s40820-024-01497-z
J. Xu, B. Li, Z. Ma, X. Zhang, C. Zhu et al., Multifunctional film assembled from N-doped carbon nanofiber with Co-N4-O single atoms for highly efficient electromagnetic energy attenuation. Nano-Micro Lett. 16(1), 240 (2024). https://doi.org/10.1007/s40820-024-01440-2
P. Zhang, M. Wei, K. Wang, H. Wang, Y. Zuo et al., Performance optimization of zinc-air batteries via nanomaterials. Energy Storage Mater. 75, 104109 (2025). https://doi.org/10.1016/j.ensm.2025.104109
W. Su, Y. Zhang, H. Wang, M. Yang, Z. Niu, An ultrafast air self-charging zinc battery. Adv. Mater. 36(2), e2308042 (2024). https://doi.org/10.1002/adma.202308042
Y. Huang, W. Liu, C. Lin, Q. Hou, S. Nie, Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries. Nano Energy 123, 109416 (2024). https://doi.org/10.1016/j.nanoen.2024.109416
L. Li, X. Tang, B. Wu, B. Huang, K. Yuan et al., Advanced architectures of air electrodes in zinc-air batteries and hydrogen fuel cells. Adv. Mater. 36(13), e2308326 (2024). https://doi.org/10.1002/adma.202308326
R.-B. Huang, M.-Y. Wang, J.-F. Xiong, H. Zhang, J.-H. Tian et al., Anode optimization strategies for zinc–air batteries. eScience 5(3), 100309 (2025). https://doi.org/10.1016/j.esci.2024.100309
X. Bi, Y. Jiang, R. Chen, Y. Du, Y. Zheng et al., Rechargeable zinc–air versus lithium–air battery: from fundamental promises toward technological potentials. Adv. Energy Mater. 14(6), 2302388 (2024). https://doi.org/10.1002/aenm.202302388
M. Yang, X. Shu, W. Pan, J. Zhang, Toward flexible zinc-air batteries with self-supported air electrodes. Small 17(48), e2006773 (2021). https://doi.org/10.1002/smll.202006773
A.C. Tavares, Asymmetric zinc–air battery: challenges and opportunities for the air electrode. Chem. Catal. 2(9), 2132–2134 (2022). https://doi.org/10.1016/j.checat.2022.08.015
X. Cui, Y. Liu, G. Han, M. Cao, L. Han et al., Wood-derived integral air electrode for enhanced interfacial electrocatalysis in rechargeable zinc–air battery. Small 17(38), 2101607 (2021). https://doi.org/10.1002/smll.202101607
L. Zhong, C. Jiang, M. Zheng, X. Peng, T. Liu et al., Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 6(10), 3624–3633 (2021). https://doi.org/10.1021/acsenergylett.1c01678
L. Li, Q. Cao, Y. Wu, Y. Zheng, H. Tang et al., Wood-derived continuously oriented three-phase interfacial channels for high-performance quasi-solid-state alkaline zinc batteries. Adv. Mater. 35(26), e2300132 (2023). https://doi.org/10.1002/adma.202300132
L. Zhang, Y. Liu, S. Liu, L. Zhou, X. Wu et al., Mn-doped Co nanops on wood-derived monolithic carbon for rechargeable zinc–air batteries. J. Mater. Chem. A 11(42), 22951–22959 (2023). https://doi.org/10.1039/D3TA05023H
S. Zhang, Z. Chen, Z. Xiong, Z. Wang, Z. Zhao et al., Electronic structure regulation of carbon atoms from wood for enhancing Zn–air battery performances. J. Mater. Chem. A 13(3), 2198–2207 (2025). https://doi.org/10.1039/d4ta07226j
W. Li, F. Wang, Z. Zhang, S. Min, Graphitic carbon layer-encapsulated Co nanops embedded on porous carbonized wood as a self-supported chainmail oxygen electrode for rechargeable Zn-air batteries. Appl. Catal. B Environ. 317, 121758 (2022). https://doi.org/10.1016/j.apcatb.2022.121758
X. Deng, Z. Jiang, Y. Chen, D. Dang, Q. Liu et al., Renewable wood-derived hierarchical porous, N-doped carbon sheet as a robust self-supporting cathodic electrode for zinc-air batteries. Chin. Chem. Lett. 34(1), 107389 (2023). https://doi.org/10.1016/j.cclet.2022.03.112
P. Zhao, L. Zhang, J. Chen, C. Qiu, B. Wang et al., From wood to flexible Zn-air battery: Fe3O4 nanops synergistic single iron atoms on N-doped carbon nanosheets electrocatalyst and lignosulfonate-functionalized gel electrolyte. Chem. Eng. J. 484, 149415 (2024). https://doi.org/10.1016/j.cej.2024.149415
Z. Chen, H. Chen, T. Li, X. Tian, K. Zhang et al., Defective wood-based chainmail electrocatalysts boost performances of seawater-medium Zn-air batteries. J. Energy Chem. 102, 134–143 (2025). https://doi.org/10.1016/j.jechem.2024.10.029
L. Zheng, Y. Zhong, J. Cao, M. Liu, Y. Liao et al., Modulation of electronic synergy to enhance the intrinsic activity of Fe5Ni4S8 nanosheets in restricted space carbonized wood frameworks for efficient oxygen evolution reaction. Small 20(21), 2308928 (2024). https://doi.org/10.1002/smll.202308928
P. Zhang, K. Sun, Y. Liu, B. Zhou, S. Li et al., Improving bifunctional catalytic activity of biochar via in situ growth of nickel-iron hydroxide as cathodic catalyst for zinc-air batteries. Biochar 5(1), 60 (2023). https://doi.org/10.1007/s42773-023-00259-1
P. Zhang, Y. Liu, S. Wang, L. Zhou, T. Liu et al., Wood-derived monolithic catalysts with the ability of activating water molecules for oxygen electrocatalysis. Small 18(34), 2202725 (2022). https://doi.org/10.1002/smll.202202725
M. Cao, Y. Liu, K. Sun, H. Li, X. Lin et al., Coupling Fe3C nanops and N-doping on wood-derived carbon to construct reversible cathode for Zn-air batteries. Small 18(26), e2202014 (2022). https://doi.org/10.1002/smll.202202014
Y. Yang, N. Li, T. Lv, Z. Chen, Y. Liu et al., Natural wood-derived free-standing films as efficient and stable separators for high-performance lithium ion batteries. Nanoscale Adv. 4(7), 1718–1726 (2022). https://doi.org/10.1039/D2NA00097K
J. Li, A. Wang, W. Xiang, S. Liu, L. Li et al., Direct synthesis of a lithium carboxymethyl cellulose binder using wood dissolving pulp for high-performance LiFePO4 cathodes in lithium-ion batteries. Bioresour. Technol. 401, 130711 (2024). https://doi.org/10.1016/j.biortech.2024.130711
P. Li, T. Yuan, J. Qiu, H. Che, Q. Ma et al., A comprehensive review of layered transition metal oxide cathodes for sodium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R. Rep. 163, 100902 (2025). https://doi.org/10.1016/j.mser.2024.100902
J.-E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal-organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36(16), e2312471 (2024). https://doi.org/10.1002/adma.202312471
J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
J.-E. Zhou, Z. Xu, Y. Li, X. Lin, Y. Wu et al., Oxygen-deficient metal–organic framework derivatives for advanced energy storage: multiscale design, application, and future development. Coord. Chem. Rev. 494, 215348 (2023). https://doi.org/10.1016/j.ccr.2023.215348
Q. Huang, A. Zeb, Z. Xu, S. Sahar, J.-E. Zhou et al., Fe-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Coord. Chem. Rev. 494, 215335 (2023). https://doi.org/10.1016/j.ccr.2023.215335
C. Zhang, S. Chou, Z. Guo, S.-X. Dou, Beyond lithium-ion batteries. Adv. Funct. Mater. 34(5), 2308001 (2024). https://doi.org/10.1002/adfm.202308001
S.-K. Jung, I. Hwang, D. Chang, K.-Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
Y. Shao, J. Xu, A. Amardeep, Y. Xia, X. Meng et al., Lithium-ion conductive coatings for nickel-rich cathodes for lithium-ion batteries. Small Methods 8(12), 2400256 (2024). https://doi.org/10.1002/smtd.202400256
S. Zhou, Z. Tang, Z. Pan, Y. Huang, L. Zhao et al., Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat 2(3), 357–367 (2022). https://doi.org/10.1002/sus2.60
H. Su, H. Yu, Composite-structure materials for Na-ion batteries. Small Meth 3(4), 1800205 (2019). https://doi.org/10.1002/smtd.201800205
Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8(9), 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
M. Li, H. Zhuo, Q. Jing, Y. Gu, Z. Liao et al., Low-temperature performance of Na-ion batteries. Carbon Energy 6(10), e546 (2024). https://doi.org/10.1002/cey2.546
T. Jin, X. Ji, P.-F. Wang, K. Zhu, J. Zhang et al., High-energy aqueous sodium-ion batteries. Angew. Chem. Int. Ed. 60(21), 11943–11948 (2021). https://doi.org/10.1002/anie.202017167
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
G. Zhou, L. Mo, C. Zhou, Y. Wu, F. Lai et al., Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. Chem. Eng. J. 420, 127597 (2021). https://doi.org/10.1016/j.cej.2020.127597
C. Liu, T. Lei, F. Seidi, M. Ahmad, D. Cao et al., Multiscale wood-derived materials for advanced supercapacitors: from macro to micro and nano. Energy Storage Mater. 72, 103774 (2024). https://doi.org/10.1016/j.ensm.2024.103774
Y. Yu, M. Li, J. Zhou, M. Sun, X. Sun et al., Structural designs of advanced wood-based thick electrodes for high-performance eco-supercapacitors. Nano Today 55, 102154 (2024). https://doi.org/10.1016/j.nantod.2024.102154
Y. Wang, X. Lin, T. Liu, H. Chen, S. Chen et al., Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28(52), 1806207 (2018). https://doi.org/10.1002/adfm.201806207
J. Cao, L. Lin, J. Zhang, F. Zhao, J. Shi et al., Biological treatment as a green approach for enhancing electrochemical performance of wood derived carbon based supercapacitor electrodes. J. Clean. Prod. 422, 138659 (2023). https://doi.org/10.1016/j.jclepro.2023.138659
W. Xiong, L. Zhao, J. Ouyang, Y. Tian, L. Wang et al., Surface-modified composites of metal–organic framework and wood-derived carbon for high-performance supercapacitors. J. Colloid Interface Sci. 679, 243–252 (2025). https://doi.org/10.1016/j.jcis.2024.09.247
W. Chen, Z. Li, F. Jiang, M. Luo, K. Yang et al., Water evaporation triggered self-assembly of MXene on non-carbonized wood with well-aligned channels as size-customizable free-standing electrode for supercapacitors. Energy Environ. Mater. 6(5), e12406 (2023). https://doi.org/10.1002/eem2.12406
W. Chen, K. Yang, M. Luo, D. Zhang, Z. Li et al., Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors. EcoMat 5(1), e12271 (2023). https://doi.org/10.1002/eom2.12271
X. Wang, J. Hu, H. Guan, X. Dai, M. Wu, Wood-based catalytic filter decorated with ZIF-67 for highly efficient and continuous organic pollutant removal. Chem. Eng. J. 479, 147580 (2024). https://doi.org/10.1016/j.cej.2023.147580
H. Xia, Z. Zhang, J. Liu, Y. Deng, D. Zhang et al., Novel Fe-Mn-O nanosheets/wood carbon hybrid with tunable surface properties as a superior catalyst for Fenton-like oxidation. Appl. Catal. B Environ. 259, 118058 (2019). https://doi.org/10.1016/j.apcatb.2019.118058
D. Xie, M. He, X. Li, J. Sun, J. Luo et al., Tree-inspired efficient solar evaporation and simultaneous in-situ purification of ultra-highly concentrated mixed volatile organic wastewater. Nano Energy 93, 106802 (2022). https://doi.org/10.1016/j.nanoen.2021.106802
Y. Mao, L. Hu, Z.J. Ren, Engineered wood for a sustainable future. Matter 5(5), 1326–1329 (2022). https://doi.org/10.1016/j.matt.2022.04.013
T. Yang, Y. Liu, G. Xia, X. Zhu, Y. Zhao, Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO2. J. Clean. Prod. 329, 129726 (2021). https://doi.org/10.1016/j.jclepro.2021.129726
Y. Yu, N. Li, X. Lu, B. Yan, G. Chen et al., Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: performance and internal mechanism. J. Hazard. Mater. 421, 126735 (2022). https://doi.org/10.1016/j.jhazmat.2021.126735
Y. Wang, W. Yao, Z. Li, H. Tan, C. Sun et al., Fe3C@Fe decorated carbonized wood fiber catalyst for organic dyes degradation: preparation, characterization and mechanism. Int. J. Biol. Macromol. 282, 137316 (2024). https://doi.org/10.1016/j.ijbiomac.2024.137316
Z. Shen, X. Wang, D. Fan, X. Xu, Y. Lu, Wood–hydrogel composites coated with C3N4 photocatalyst for synchronous solar steam generation and photocatalytic degradation. J. Mater. Sci. 58(32), 13154–13164 (2023). https://doi.org/10.1007/s10853-023-08849-x
B. Huo, J. Wang, Z. Wang, C. Liu, W. Hao et al., Ni-doped MoS2 embedded in natural wood containing porous cellulose for piezo-catalytic degradation of tetracycline. Int. J. Biol. Macromol. 233, 123589 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123589
Y. Yu, Q. Zhang, L. Hao, H. Huo, M. Li et al., Heterogeneous Cu2O-Au nanocatalyst anchored on wood and its insight for synergistic photodegradation of organic pollutants. Environ. Res. 215(Pt 2), 114298 (2022). https://doi.org/10.1016/j.envres.2022.114298
H. Fang, Q. Yu, D. Xie, Y. Cai, J. Sun et al., Flexible bifunctional wood-derived water filtration/photo-Fenton membrane for efficient purification of mixed organic wastewater. Colloids Surf A Physicochem Eng Asp 697, 134498 (2024). https://doi.org/10.1016/j.colsurfa.2024.134498
X. Liu, Q. Lin, L. Zhao, J. Fang, J. Qi et al., Wood-supported nitrogen-doped carbon quantum dot @Cu2O composites for efficient photocatalytic degradation of dye wastewater. Cellulose 31(12), 7587–7600 (2024). https://doi.org/10.1007/s10570-024-06057-7
F. Liang, Z. Liu, X. Jiang, J. Li, K. Xiao et al., NaOH-modified biochar supported Fe/Mn bimetallic composites as efficient peroxymonosulfate activator for enhance tetracycline removal. Chem. Eng. J. 454, 139949 (2023). https://doi.org/10.1016/j.cej.2022.139949
S. Pang, C. Zhou, Y. Sun, K. Zhang, W. Ye et al., Natural wood-derived charcoal embedded with bimetallic iron/cobalt sites to promote ciprofloxacin degradation. J. Clean. Prod. 414, 137569 (2023). https://doi.org/10.1016/j.jclepro.2023.137569
R.F. Beims, A. Kermanshahi-pour, C.C. Xu, Functionalizing natural wood and delignified wood into bio-adsorbents for removal of Cu2+ from water. Cellulose 30(12), 8037–8047 (2023). https://doi.org/10.1007/s10570-023-05381-8
J. Jiang, Y. Shi, N.L. Ma, H. Ye, M. Verma et al., Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. Environ. Pollut. 340, 122830 (2024). https://doi.org/10.1016/j.envpol.2023.122830
M. Keshvardoostchokami, F.L. Braghiroli, C.M. Neculita, A. Koubaa, Advances in modified wood-based adsorbents for contaminant removal: valorization methods, modification mechanisms, and environmental applications. Curr. For. Rep. 9(6), 444–460 (2023). https://doi.org/10.1007/s40725-023-00200-6
Y. Zhang, X. Zhang, Z. Zhou, G. Liu, C. Wang, A review of the conversion of wood biomass into high-performance bulk biochar: pretreatment, modification, characterization, and wastewater application. Sep. Purif. Technol. 361, 131448 (2025). https://doi.org/10.1016/j.seppur.2025.131448
B. Yue, Z. Pang, Y. Yu, J. Wu, J. Qu et al., Difunctional MOF-EDTA modified wood membrane for efficient water purification. Chem. Eng. J. 504, 158896 (2025). https://doi.org/10.1016/j.cej.2024.158896
V.K.H. Bui, T.P. Nguyen, T.C. Phuong Tran, T.T. Nguyen Nguyen, T.N. Duong et al., Biochar-based fixed filter columns for water treatment: a comprehensive review. Sci. Total. Environ. 954, 176199 (2024). https://doi.org/10.1016/j.scitotenv.2024.176199
A. Zia, M. Neupane, A. McGlone, R. He, R. Xin et al., Coupling metal-organic frameworks and wood-based carbon for water remediation. Nano Res. 17(6), 5661–5669 (2024). https://doi.org/10.1007/s12274-024-6490-z
M. Li, Y. Sun, Y. Lei, G. Liu, H. Jiang et al., Nature-inspired ultrathin wood-based interfacial solar steam generators for high-efficiency water purification. Desalination 591, 118018 (2024). https://doi.org/10.1016/j.desal.2024.118018
X. Ma, R. Su, Z. Zeng, L. Li, H. Wang et al., Wood-based solar-driven interfacial evaporators: design and application. Chem. Eng. J. 471, 144517 (2023). https://doi.org/10.1016/j.cej.2023.144517
D. Jiang, Y. Dai, Y. Jiang, W. Yu, D. Ma et al., Polydopamine/Fe3O4 modified wood-based evaporator for efficient and continuous water purification. J. Colloid Interface Sci. 652, 1271–1281 (2023). https://doi.org/10.1016/j.jcis.2023.08.168
Z. Yu, J. Hu, G. Liu, Y. Liu, S. Chang et al., Micronleaf-shape graphene interfaces on wood transverse sections as advanced photothermal evaporators for water purification. J. Mater. Sci. Technol. 193, 81–89 (2024). https://doi.org/10.1016/j.jmst.2024.01.023
Z. Cui, J. Wu, H. Li, Y. Xu, T. Wu et al., A bifunctional wood membrane modified by MoS2/covalent organic framework heterojunctions for effective solar-driven water evaporation and contaminant degradation. Sci. China Chem. 67(6), 2111–2120 (2024). https://doi.org/10.1007/s11426-023-1961-3
Y. Chen, R. Hou, L. Yang, C. Chen, J. Cui et al., Elastic, janus 3D evaporator with arch-shaped design for low-footprint and high-performance solar-driven zero-liquid discharge. Desalination 583, 117644 (2024). https://doi.org/10.1016/j.desal.2024.117644
J. Khan, M.H. Arsalan, Solar power technologies for sustainable electricity generation–a review. Renew. Sustain. Energy Rev. 55, 414–425 (2016). https://doi.org/10.1016/j.rser.2015.10.135
T. Li, H. Liu, X. Zhao, G. Chen, J. Dai et al., Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28(16), 1707134 (2018). https://doi.org/10.1002/adfm.201707134
A.G. Saad, A. Gebreil, D.A. Kospa, S.A. El-Hakam, A.A. Ibrahim, Integrated solar seawater desalination and power generation via plasmonic sawdust-derived biochar: waste to wealth. Desalination 535, 115824 (2022). https://doi.org/10.1016/j.desal.2022.115824
Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33(43), 2306947 (2023). https://doi.org/10.1002/adfm.202306947
J. Gan, Q. Lin, Y. Huang, Y. Wu, W. Yu, Full-wood utilization strategy toward a directional luminescent solar concentrator. ACS Nano 17(23), 23512–23523 (2023). https://doi.org/10.1021/acsnano.3c06162
N. Ali, S. Abbas, Y. Cao, H. Fazal, J. Zhu et al., Low cost, robust, environmentally friendly, wood supported 3D-hierarchical Cu3SnS4 for efficient solar powered steam generation. J. Colloid Interface Sci. 615, 707–715 (2022). https://doi.org/10.1016/j.jcis.2022.02.012
A. Gnanasekaran, K. Rajaram, Rational design of different interfacial evaporators for solar steam generation: recent development, fabrication, challenges and applications. Renew. Sustain. Energy Rev. 192, 114202 (2024). https://doi.org/10.1016/j.rser.2023.114202
G. Liu, T. Chen, J. Xu, G. Li, K. Wang, Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 8(2), 513–531 (2020). https://doi.org/10.1039/c9ta12211g
X. Dai, H. Guan, X. Wang, M. Wu, P. Jiang et al., Apple leaf-inspired bilayered Janus wood evaporator with decoupled light-vapor interfaces for high-efficiency solar steam generation. Chem. Eng. J. 499, 155796 (2024). https://doi.org/10.1016/j.cej.2024.155796
S. Cao, P. Rathi, X. Wu, D. Ghim, Y.-S. Jun et al., Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv. Mater. 33(28), e2000922 (2021). https://doi.org/10.1002/adma.202000922
H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8(8), 1701616 (2018). https://doi.org/10.1002/aenm.201701616
D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32(52), 2003722 (2020). https://doi.org/10.1002/adma.202003722
K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55(28), 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29(32), 1901798 (2019). https://doi.org/10.1002/adfm.201901798
V.-D. Dao, N.H. Vu, H.-L. Thi Dang, S. Yun, Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 85, 105979 (2021). https://doi.org/10.1016/j.nanoen.2021.105979
J. Li, C. Chen, W. Gan, Z. Li, H. Xie et al., A bio-inspired, hierarchically porous structure with a decoupled fluidic transportation and evaporative pathway toward high-performance evaporation. J. Mater. Chem. A 9(15), 9745–9752 (2021). https://doi.org/10.1039/d0ta11385a
S. Yang, X. Tao, W. Chen, J. Mao, H. Luo et al., Ionic hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 34(21), 2200693 (2022). https://doi.org/10.1002/adma.202200693
J. Garemark, F. Ram, L. Liu, I. Sapouna, M.F. Cortes Ruiz et al., Advancing hydrovoltaic energy harvesting from wood through cell wall nanoengineering. Adv. Funct. Mater. 33(4), 2208933 (2023). https://doi.org/10.1002/adfm.202208933
T. Xu, X. Ding, H. Cheng, G. Han, L. Qu, Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 36(12), 2209661 (2024). https://doi.org/10.1002/adma.202209661
Y. Li, J. Cui, H. Shen, C. Liu, P. Wu et al., Useful spontaneous hygroelectricity from ambient air by ionic wood. Nano Energy 96, 107065 (2022). https://doi.org/10.1016/j.nanoen.2022.107065
L. Huang, Y. Zhang, X. Song, D. Li, X. Chen et al., A moist-electric generator based on oxidized and aminated regenerated cellulose. Nano Energy 118, 108973 (2023). https://doi.org/10.1016/j.nanoen.2023.108973
J. Zhang, Z. Hu, Y. Hou, C. Wu, W. Ding, Wood hydrogel for efficient moisture-electric generation. ACS Appl. Polym. Mater. 6(15), 8856–8865 (2024). https://doi.org/10.1021/acsapm.4c00959
K. Zhang, L. Cai, A. Nilghaz, G. Chen, X. Wan et al., Enhancing output performance of surface-modified wood sponge-carbon black ink hygroelectric generator via moisture-triggered galvanic cell. Nano Energy 98, 107288 (2022). https://doi.org/10.1016/j.nanoen.2022.107288
J. Zhang, Y. Hou, Y. Li, S. Hu, Chinese ink enabled natural wood for moist-induced electricity generation. J. Mater. Res. Technol. 17, 1822–1830 (2022). https://doi.org/10.1016/j.jmrt.2022.01.100
X. Zhou, W. Zhang, C. Zhang, Y. Tan, J. Guo et al., Harvesting electricity from water evaporation through microchannels of natural wood. ACS Appl. Mater. Interfaces 12(9), 11232–11239 (2020). https://doi.org/10.1021/acsami.9b23380
X. Piao, P. Zhang, J. Shen, C. Jin, J. Wang et al., Water-evaporation induced electricity generation inspired by natural tree transpiration. Sustain. Mater. Technol. 39, e00836 (2024). https://doi.org/10.1016/j.susmat.2024.e00836
Q. Wei, W. Ge, Z. Yuan, S. Wang, C. Lu et al., Moisture electricity generation: mechanisms, structures, and applications. Nano Res. 16(5), 7496–7510 (2023). https://doi.org/10.1007/s12274-023-5465-9
M.Y. Wong, A. Gautam, K. Lin, J. Chen, T.C. Ho et al., Sustainable high-performance density: nanoporous composite wood for water evaporation-induced electricity generation. Chem. Eng. J. 510, 161729 (2025). https://doi.org/10.1016/j.cej.2025.161729
T. Hu, K. Zhang, W. Deng, W. Guo, Hydrovoltaic effects from mechanical-electric coupling at the water-solid interface. ACS Nano 18(35), 23912–23940 (2024). https://doi.org/10.1021/acsnano.4c07900
C. Li, L. Wang, C. Fu, J. Yue, Y. Tao et al., Wear-resistant cellulosic triboelectric material for robust human-machine interface and high-performance self-powered sensing. Nano Energy 135, 110646 (2025). https://doi.org/10.1016/j.nanoen.2025.110646
W. Ma, Y. Lin, C. Huang, M.A. Amin, S.M. El-Bahy et al., Fully wood-based high-performance triboelectric nanogenerator for smart home. Adv. Compos. Hybrid Mater. 7(4), 126 (2024). https://doi.org/10.1007/s42114-024-00937-z
Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z
A.A. Jan, S. Kim, S. Kim, A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion. Soft Sci. 4(1), 10 (2024). https://doi.org/10.20517/ss.2023.54
T. Du, Z. Chen, F. Dong, H. Cai, Y. Zou et al., Advances in green triboelectric nanogenerators. Adv. Funct. Mater. 34(24), 2313794 (2024). https://doi.org/10.1002/adfm.202313794
M. Al Mahadi Hasan, T. Zhang, H. Wu, Y. Yang, Water droplet-based nanogenerators. Adv. Energy Mater. 12(37), 2201383 (2022). https://doi.org/10.1002/aenm.202201383
N.R. Tanguy, M. Rana, A.A. Khan, X. Zhang, N. Tratnik et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 98, 107337 (2022). https://doi.org/10.1016/j.nanoen.2022.107337
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
J. Sun, H. Guo, J. Ribera, C. Wu, K. Tu et al., Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano 14(11), 14665–14674 (2020). https://doi.org/10.1021/acsnano.0c05493
S. Hao, J. Jiao, Y. Chen, Z.L. Wang, X. Cao, Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors. Nano Energy 75, 104957 (2020). https://doi.org/10.1016/j.nanoen.2020.104957
J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10(1), 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
M. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13(6), 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
J. Sun, U. Schütz, K. Tu, S.M. Koch, G. Roman et al., Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy 102, 107670 (2022). https://doi.org/10.1016/j.nanoen.2022.107670
R. Funayama, S. Hayashi, M. Terakawa, Laser-induced graphitization of lignin/PLLA composite sheets for biodegradable triboelectric nanogenerators. ACS Sustainable Chem. Eng. 11(7), 3114–3122 (2023). https://doi.org/10.1021/acssuschemeng.2c07510
J. Liao, Y. Wang, S. Shi, C. Liu, Q. Sun et al., Flexible wood-based triboelectric nanogenerator for versatile self-powered sensing. Sustain. Mater. Technol. 38, e00771 (2023). https://doi.org/10.1016/j.susmat.2023.e00771
X. Shi, P. Chen, K. Han, C. Li, R. Zhang et al., A strong, biodegradable, and recyclable all-lignocellulose fabricated triboelectric nanogenerator for self-powered disposable medical monitoring. J. Mater. Chem. A 11(22), 11730–11739 (2023). https://doi.org/10.1039/d3ta01763j
T. Cheng, H. Zhang, K. Cao, Y. Jing, Y. Wu, First development of transparent wood-based triboelectric nanogenerator (TW-TENG): cooperative incorporation of transparency, aesthetic of wood, and superior triboelectric properties. Nano Energy 128, 109888 (2024). https://doi.org/10.1016/j.nanoen.2024.109888
J. Sun, K. Tu, S. Büchele, S.M. Koch, Y. Ding et al., Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter 4(9), 3049–3066 (2021). https://doi.org/10.1016/j.matt.2021.07.022
D. Park, J.-H. Hong, D. Choi, D. Kim, W.H. Jung et al., Biocompatible and mechanically-reinforced tribopositive nanofiber mat for wearable and antifungal human kinetic-energy harvester based on wood-derived natural product. Nano Energy 96, 107091 (2022). https://doi.org/10.1016/j.nanoen.2022.107091
S. Ankanahalli Shankaregowda, R.F. Sagade Muktar Ahmed, C.B. Nanjegowda, J. Wang, S. Guan et al., Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy 66, 104141 (2019). https://doi.org/10.1016/j.nanoen.2019.104141
N. Zhang, H. Gu, K. Lu, S. Ye, W. Xu et al., A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy 82, 105735 (2021). https://doi.org/10.1016/j.nanoen.2020.105735
J. Bang, I.K. Moon, Y.P. Jeon, B. Ki, J. Oh, Fully wood-based green triboelectric nanogenerators. Appl. Surf. Sci. 567, 150806 (2021). https://doi.org/10.1016/j.apsusc.2021.150806
M. Gu, Y. Chen, S. Gu, C. Wang, L. Chen, H. Shen, Wen, Z. Brightness-enhanced electroluminescence driven by triboelectric nanogenerators through permittivity manipulation and impedance matching. Nano Energy 98, 107308 (2022). https://doi.org/10.1016/j.nanoen.2022.107308
D. Lee, J. Chae, S. Cho, JW. Kim, A. Ahmad, MR. Karim, & D. Choi, Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motion. Abstract Highlights Int. J. Extreme Manuf 6(4), 045502 (2024). https://doi.org/10.1088/2631-7990/ad3998
O. Song, Y. Cho, S. Y. Joohoon, K. Cho, Solution-processing approach of nanomaterials toward an artificial sensory system. Abstract Highlights Int. J. Extreme. Manuf. 6(5) 052001 (2024). https://doi.org/10.1088/2631-7990/ad4c29
Z. Li, A. Yu, Q. Zhang, & J. Zhai, Recent advances in fabricating high-performance triboelectric nanogenerators via modulating surface charge density. Abstract Highlights Int. J. Extreme. Manuf. 6(5), 052003 (2024). https://doi.org/10.1088/2631-7990/ad4f32
P. Wu, C. Zhao, E. Cui, S. Xu, T. Liu, F. Wang, & X. Mu, Advances in magnetic-assisted triboelectric nanogenerators: structures materials and self-sensing systems. Abstract Highlights Int. J. Extreme. Manuf. 6(5) 052007 (2024). https://doi.org/10.1088/2631-7990/ad5bc6
S. Yin, H. Li, W. Qian, M. A. M. Hasan, & Y. Yang, Non-contact intelligent sensor for recognizing transparent and naked-eye indistinguishable materials based on ferroelectric BiFeO3 thin films. Abstract Highlights Int. J. Extreme Manuf. 6(5), 055502 (2024). https://doi.org/10.1088/2631-7990/ad57a0
X, Bai, D. Wang, L. Zhen, M. Cui, J. Liu, Zhao. N, B, Yang. Design and micromanufacturing technologies of focused