Ferroelectric Optoelectronic Sensor for Intelligent Flame Detection and In-Sensor Motion Perception
Corresponding Author: Hao Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 123
Abstract
Next-generation fire safety systems demand precise detection and motion recognition of flames. In-sensor computing, which integrates sensing, memory, and processing capabilities, has emerged as a key technology in flame detection. However, the implementation of hardware-level functional demonstrations based on artificial vision systems in the solar-blind ultraviolet (UV) band (200–280 nm) is hindered by the weak detection capability. Here, we propose Ga2O3/In2Se3 heterojunctions for the ferroelectric (abbreviation: Fe) optoelectronic sensor (abbreviation: OES) array (5 × 5 pixels), which is capable of ultraweak UV light detection with an ultrahigh detectivity through ferroelectric regulation and features in configurable multimode functionality. The Fe-OES array can directly sense different flame motions and simulate the non-spiking gradient neurons of insect visual system. Moreover, the flame signal can be effectively amplified in combination with leaky integration-and-fire neuron hardware. Using this Fe-OES system and neuromorphic hardware, we successfully demonstrate three flame processing tasks: achieving efficient flame detection across all time periods with terminal and cloud-based alarms; flame motion recognition with a lightweight convolutional neural network achieving 96.47% accuracy; and flame light recognition with 90.51% accuracy by means of a photosensitive artificial neural system. This work provides effective tools and approaches for addressing a variety of complex flame detection tasks.
Highlights:
1 The Ga₂O₃/In₂Se₃ heterojunction ferroelectric optoelectronic sensor array enables precise detection of ultraweak UV signals through ferroelectric modulation.
2 Efficient flame detection across all time periods is achieved through terminal devices and cloud-based alert systems.
3 The lightweight convolutional neural network-based approach achieves a flame motion recognition accuracy of 96.47%, while the optoelectronic artificial neural system attains 90.51% accuracy in identifying flame optical signals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhao, W. Li, P. Ciais, M. Santoro, O. Cartus et al., Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. 14(7), 479–483 (2021). https://doi.org/10.1038/s41561-021-00763-8
- R.C. Scholten, R. Jandt, E.A. Miller, B.M. Rogers, S. Veraverbeke, Overwintering fires in boreal forests. Nature 593(7859), 399–404 (2021). https://doi.org/10.1038/s41586-021-03437-y
- S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Flame-retardant surface treatments. Nat. Rev. Mater. 5(4), 259–275 (2020). https://doi.org/10.1038/s41578-019-0164-6
- S. Zhang, Y. Zhang, Y. Huang, B. Lin, S. Ling et al., Intelligent coating based on metal-insulator transitional Ti3O5 towards fire sensing and protection. Chem. Eng. J. 450, 137910 (2022). https://doi.org/10.1016/j.cej.2022.137910
- M. Kim, G.J. Lee, C. Choi, M.S. Kim, M. Lee et al., An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 3(9), 546–553 (2020). https://doi.org/10.1038/s41928-020-0429-5
- D. Jayachandran, A. Oberoi, A. Sebastian, T.H. Choudhury, B. Shankar et al., A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3(10), 646–655 (2020). https://doi.org/10.1038/s41928-020-00466-9
- F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
- M. Lee, G.J. Lee, H.J. Jang, E. Joh, H. Cho et al., An amphibious artificial vision system with a panoramic visual field. Nat. Electron. 5(7), 452–459 (2022). https://doi.org/10.1038/s41928-022-00789-9
- L. Pi, P. Wang, S.-J. Liang, P. Luo, H. Wang et al., Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 5(4), 248–254 (2022). https://doi.org/10.1038/s41928-022-00747-5
- Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17(1), 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
- T. Li, J. Miao, X. Fu, B. Song, B. Cai et al., Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18(11), 1303–1310 (2023). https://doi.org/10.1038/s41565-023-01446-8
- R. Yuan, Q. Duan, P.J. Tiw, G. Li, Z. Xiao et al., A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat. Commun. 13(1), 3973 (2022). https://doi.org/10.1038/s41467-022-31747-w
- Y. Zhou, J. Fu, Z. Chen, F. Zhuge, Y. Wang et al., Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6(11), 870–878 (2023). https://doi.org/10.1038/s41928-023-01055-2
- H. Zheng, Z. Zheng, R. Hu, B. Xiao, Y. Wu et al., Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics. Nat. Commun. 15(1), 277 (2024). https://doi.org/10.1038/s41467-023-44614-z
- J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
- X. Han, J. Tao, Y. Liang, F. Guo, Z. Xu et al., Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception. Nat. Commun. 15(1), 10430 (2024). https://doi.org/10.1038/s41467-024-54845-3
- Z. Wang, T. Wan, S. Ma, Y. Chai, Multidimensional vision sensors for information processing. Nat. Nanotechnol. 19(7), 919–930 (2024). https://doi.org/10.1038/s41565-024-01665-7
- H. Huang, X. Liang, Y. Wang, J. Tang, Y. Li et al., Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing. Nat. Nanotechnol. 20(1), 93–103 (2025). https://doi.org/10.1038/s41565-024-01794-z
- Y. Chai, Silicon photodiodes that multiply. Nat. Electron. 5(8), 483–484 (2022). https://doi.org/10.1038/s41928-022-00822-x
- R.A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N. Ohannessian et al., Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13(1), 2074 (2022). https://doi.org/10.1038/s41467-022-29727-1
- L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5(11), 761–773 (2022). https://doi.org/10.1038/s41928-022-00847-2
- L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu et al., Ultrasensitive negative capacitance phototransistors. Nat. Commun. 11(1), 101 (2020). https://doi.org/10.1038/s41467-019-13769-z
- Y. Wu, T. Zhang, D. Guo, B. Li, K. Pei et al., Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices. Nat. Commun. 15, 10481 (2024). https://doi.org/10.1038/s41467-024-54841-7
- Q. Zhang, N. Li, T. Zhang, D. Dong, Y. Yang et al., Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat. Commun. 14(1), 418 (2023). https://doi.org/10.1038/s41467-023-36117-8
- Z. Zhang, X. Zhao, X. Zhang, X. Hou, X. Ma et al., In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13(1), 6590 (2022). https://doi.org/10.1038/s41467-022-34230-8
- W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao et al., Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III(2)-VI(3) van der Waals materials. Nat. Commun. 8, 14956 (2017). https://doi.org/10.1038/ncomms14956
- G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587(7832), 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
- G. Wu, B. Tian, L. Liu, W. Lv, S. Wu et al., Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3(1), 43–50 (2020). https://doi.org/10.1038/s41928-019-0350-y
- W. Han, X. Zheng, K. Yang, C.S. Tsang, F. Zheng et al., Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nat. Nanotechnol. 18(1), 55–63 (2023). https://doi.org/10.1038/s41565-022-01257-3
- F. Xue, X. He, W. Liu, D. Periyanagounder, C. Zhang et al., Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater. 30(52), 2004206 (2020). https://doi.org/10.1002/adfm.202004206
- B. Wang, W. Chen, L. Zou, T. Wang, Z. Li et al., A programmable nonvolatile Schottky diode based on van der Waals ferroelectric junction. Nano Lett. 25(26), 10699–10708 (2025). https://doi.org/10.1021/acs.nanolett.5c02646
- J. Wu, H.-Y. Chen, N. Yang, J. Cao, X. Yan et al., High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3(8), 466–472 (2020). https://doi.org/10.1038/s41928-020-0441-9
- F. Xue, X. He, J.R.D. Retamal, A. Han, J. Zhang et al., Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 31(29), 1901300 (2019). https://doi.org/10.1002/adma.201901300
- S. Wang, L. Liu, L. Gan, H. Chen, X. Hou et al., Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12(1), 53 (2021). https://doi.org/10.1038/s41467-020-20257-2
- X. Hou, X. Zhao, Y. Zhang, Z. Zhang, Y. Liu et al., High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv. Mater. 34(1), 2106923 (2022). https://doi.org/10.1002/adma.202106923
- Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei et al., Defect passivation on lead-free CsSnI(3) perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 14(1), 215 (2022). https://doi.org/10.1007/s40820-022-00964-9
- F.P. García de Arquer, A. Armin, P. Meredith, E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100
- D. Shivani, A. Kaur, M. Ghosh, Kumar, A strategic review on gallium oxide based power electronics: Recent progress and future prospects. Mater. Today Commun. 33, 104244 (2022). https://doi.org/10.1016/j.mtcomm.2022.104244
- A. Kalra, U.U. Muazzam, R. Muralidharan, S. Raghavan, D.N. Nath, The road ahead for ultrawide bandgap solar-blind UV photodetectors. J. Appl. Phys. 131(15), 150901 (2022). https://doi.org/10.1063/5.0082348
- Y. Qin, L.-H. Li, Z. Yu, F. Wu, D. Dong et al., Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging. Adv. Sci. 8(20), 2101106 (2021). https://doi.org/10.1002/advs.202101106
- H. Wang, J. Ma, H. Chen, L. Wang, P. Li et al., Ferroelectricity enhanced self-powered solar-blind UV photodetector based on Ga2O3/ZnO: V heterojunction. Mater. Today Phys. 30, 100929 (2023). https://doi.org/10.1016/j.mtphys.2022.100929
- C. Wu, F. Wu, C. Ma, S. Li, A. Liu et al., A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater. Today Phys. 23, 100643 (2022). https://doi.org/10.1016/j.mtphys.2022.100643
- S. Zhou, H. Zhang, X. Peng, H. Liu, H. Li et al., Fully transparent and high-performance ε-Ga2O3 photodetector arrays for solar-blind imaging and deep-ultraviolet communication. Adv. Photon. Res. 3(11), 2200192 (2022). https://doi.org/10.1002/adpr.202200192
- Y. Wang, Z. Lin, J. Ma, Y. Wu, H. Yuan et al., Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse. InfoMat 6(2), e12503 (2024). https://doi.org/10.1002/inf2.12503
- G. Ma, W. Jiang, W. Sun, Z. Yan, B. Sun et al., A broadband UV-visible photodetector based on a Ga2O3/BFO heterojunction. Phys. Scr. 96(12), 125823 (2021). https://doi.org/10.1088/1402-4896/ac2758
- Y. Wang, Y. Tang, H. Li, Z. Yang, Q. Zhang et al., P-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity. ACS Photonics 8(8), 2256–2264 (2021). https://doi.org/10.1021/acsphotonics.1c00015
- X.Y. Sun, X.H. Chen, J.G. Hao, Z.P. Wang, Y. Xu et al., A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p–n heterojunction. Appl. Phys. Lett. 119(14), 141601 (2021). https://doi.org/10.1063/5.0059061
- Q. Zhang, D. Dong, T. Zhang, T. Zhou, Y. Yang et al., Over 5 × 103-fold enhancement of responsivity in Ga2O3-based solar blind photodetector via acousto–photoelectric coupling. ACS Nano 17(23), 24033–24041 (2023). https://doi.org/10.1021/acsnano.3c08938
- M. Ding, K. Liang, S. Yu, X. Zhao, H. Ren et al., Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv. Opt. Mater. 10(16), 2200512 (2022). https://doi.org/10.1002/adom.202200512
- W. Zhang, W. Wang, J. Wei, S. Xia, J. Zhang et al., Photocarrier transport reconstruction and dramatical performance enhancement in ultrawide-bandgap ε-Ga2O3 photodetectors via surface defect passivation. Mater. Today Phys. 38, 101280 (2023). https://doi.org/10.1016/j.mtphys.2023.101280
- L. Gao, P.-Y. Chen, S. Yu, NbOx based oscillation neuron for neuromorphic computing. Appl. Phys. Lett. 111(10), 103503 (2017). https://doi.org/10.1063/1.4991917
References
Z. Zhao, W. Li, P. Ciais, M. Santoro, O. Cartus et al., Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. 14(7), 479–483 (2021). https://doi.org/10.1038/s41561-021-00763-8
R.C. Scholten, R. Jandt, E.A. Miller, B.M. Rogers, S. Veraverbeke, Overwintering fires in boreal forests. Nature 593(7859), 399–404 (2021). https://doi.org/10.1038/s41586-021-03437-y
S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Flame-retardant surface treatments. Nat. Rev. Mater. 5(4), 259–275 (2020). https://doi.org/10.1038/s41578-019-0164-6
S. Zhang, Y. Zhang, Y. Huang, B. Lin, S. Ling et al., Intelligent coating based on metal-insulator transitional Ti3O5 towards fire sensing and protection. Chem. Eng. J. 450, 137910 (2022). https://doi.org/10.1016/j.cej.2022.137910
M. Kim, G.J. Lee, C. Choi, M.S. Kim, M. Lee et al., An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 3(9), 546–553 (2020). https://doi.org/10.1038/s41928-020-0429-5
D. Jayachandran, A. Oberoi, A. Sebastian, T.H. Choudhury, B. Shankar et al., A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3(10), 646–655 (2020). https://doi.org/10.1038/s41928-020-00466-9
F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
M. Lee, G.J. Lee, H.J. Jang, E. Joh, H. Cho et al., An amphibious artificial vision system with a panoramic visual field. Nat. Electron. 5(7), 452–459 (2022). https://doi.org/10.1038/s41928-022-00789-9
L. Pi, P. Wang, S.-J. Liang, P. Luo, H. Wang et al., Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 5(4), 248–254 (2022). https://doi.org/10.1038/s41928-022-00747-5
Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17(1), 27–32 (2022). https://doi.org/10.1038/s41565-021-01003-1
T. Li, J. Miao, X. Fu, B. Song, B. Cai et al., Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18(11), 1303–1310 (2023). https://doi.org/10.1038/s41565-023-01446-8
R. Yuan, Q. Duan, P.J. Tiw, G. Li, Z. Xiao et al., A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat. Commun. 13(1), 3973 (2022). https://doi.org/10.1038/s41467-022-31747-w
Y. Zhou, J. Fu, Z. Chen, F. Zhuge, Y. Wang et al., Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6(11), 870–878 (2023). https://doi.org/10.1038/s41928-023-01055-2
H. Zheng, Z. Zheng, R. Hu, B. Xiao, Y. Wu et al., Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics. Nat. Commun. 15(1), 277 (2024). https://doi.org/10.1038/s41467-023-44614-z
J. Chen, Z. Zhou, B.J. Kim, Y. Zhou, Z. Wang et al., Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18(8), 882–888 (2023). https://doi.org/10.1038/s41565-023-01379-2
X. Han, J. Tao, Y. Liang, F. Guo, Z. Xu et al., Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception. Nat. Commun. 15(1), 10430 (2024). https://doi.org/10.1038/s41467-024-54845-3
Z. Wang, T. Wan, S. Ma, Y. Chai, Multidimensional vision sensors for information processing. Nat. Nanotechnol. 19(7), 919–930 (2024). https://doi.org/10.1038/s41565-024-01665-7
H. Huang, X. Liang, Y. Wang, J. Tang, Y. Li et al., Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing. Nat. Nanotechnol. 20(1), 93–103 (2025). https://doi.org/10.1038/s41565-024-01794-z
Y. Chai, Silicon photodiodes that multiply. Nat. Electron. 5(8), 483–484 (2022). https://doi.org/10.1038/s41928-022-00822-x
R.A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N. Ohannessian et al., Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13(1), 2074 (2022). https://doi.org/10.1038/s41467-022-29727-1
L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu et al., An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5(11), 761–773 (2022). https://doi.org/10.1038/s41928-022-00847-2
L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu et al., Ultrasensitive negative capacitance phototransistors. Nat. Commun. 11(1), 101 (2020). https://doi.org/10.1038/s41467-019-13769-z
Y. Wu, T. Zhang, D. Guo, B. Li, K. Pei et al., Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices. Nat. Commun. 15, 10481 (2024). https://doi.org/10.1038/s41467-024-54841-7
Q. Zhang, N. Li, T. Zhang, D. Dong, Y. Yang et al., Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat. Commun. 14(1), 418 (2023). https://doi.org/10.1038/s41467-023-36117-8
Z. Zhang, X. Zhao, X. Zhang, X. Hou, X. Ma et al., In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13(1), 6590 (2022). https://doi.org/10.1038/s41467-022-34230-8
W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao et al., Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III(2)-VI(3) van der Waals materials. Nat. Commun. 8, 14956 (2017). https://doi.org/10.1038/ncomms14956
G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587(7832), 72–77 (2020). https://doi.org/10.1038/s41586-020-2861-0
G. Wu, B. Tian, L. Liu, W. Lv, S. Wu et al., Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3(1), 43–50 (2020). https://doi.org/10.1038/s41928-019-0350-y
W. Han, X. Zheng, K. Yang, C.S. Tsang, F. Zheng et al., Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nat. Nanotechnol. 18(1), 55–63 (2023). https://doi.org/10.1038/s41565-022-01257-3
F. Xue, X. He, W. Liu, D. Periyanagounder, C. Zhang et al., Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater. 30(52), 2004206 (2020). https://doi.org/10.1002/adfm.202004206
B. Wang, W. Chen, L. Zou, T. Wang, Z. Li et al., A programmable nonvolatile Schottky diode based on van der Waals ferroelectric junction. Nano Lett. 25(26), 10699–10708 (2025). https://doi.org/10.1021/acs.nanolett.5c02646
J. Wu, H.-Y. Chen, N. Yang, J. Cao, X. Yan et al., High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3(8), 466–472 (2020). https://doi.org/10.1038/s41928-020-0441-9
F. Xue, X. He, J.R.D. Retamal, A. Han, J. Zhang et al., Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 31(29), 1901300 (2019). https://doi.org/10.1002/adma.201901300
S. Wang, L. Liu, L. Gan, H. Chen, X. Hou et al., Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12(1), 53 (2021). https://doi.org/10.1038/s41467-020-20257-2
X. Hou, X. Zhao, Y. Zhang, Z. Zhang, Y. Liu et al., High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv. Mater. 34(1), 2106923 (2022). https://doi.org/10.1002/adma.202106923
Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei et al., Defect passivation on lead-free CsSnI(3) perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 14(1), 215 (2022). https://doi.org/10.1007/s40820-022-00964-9
F.P. García de Arquer, A. Armin, P. Meredith, E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100
D. Shivani, A. Kaur, M. Ghosh, Kumar, A strategic review on gallium oxide based power electronics: Recent progress and future prospects. Mater. Today Commun. 33, 104244 (2022). https://doi.org/10.1016/j.mtcomm.2022.104244
A. Kalra, U.U. Muazzam, R. Muralidharan, S. Raghavan, D.N. Nath, The road ahead for ultrawide bandgap solar-blind UV photodetectors. J. Appl. Phys. 131(15), 150901 (2022). https://doi.org/10.1063/5.0082348
Y. Qin, L.-H. Li, Z. Yu, F. Wu, D. Dong et al., Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging. Adv. Sci. 8(20), 2101106 (2021). https://doi.org/10.1002/advs.202101106
H. Wang, J. Ma, H. Chen, L. Wang, P. Li et al., Ferroelectricity enhanced self-powered solar-blind UV photodetector based on Ga2O3/ZnO: V heterojunction. Mater. Today Phys. 30, 100929 (2023). https://doi.org/10.1016/j.mtphys.2022.100929
C. Wu, F. Wu, C. Ma, S. Li, A. Liu et al., A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater. Today Phys. 23, 100643 (2022). https://doi.org/10.1016/j.mtphys.2022.100643
S. Zhou, H. Zhang, X. Peng, H. Liu, H. Li et al., Fully transparent and high-performance ε-Ga2O3 photodetector arrays for solar-blind imaging and deep-ultraviolet communication. Adv. Photon. Res. 3(11), 2200192 (2022). https://doi.org/10.1002/adpr.202200192
Y. Wang, Z. Lin, J. Ma, Y. Wu, H. Yuan et al., Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse. InfoMat 6(2), e12503 (2024). https://doi.org/10.1002/inf2.12503
G. Ma, W. Jiang, W. Sun, Z. Yan, B. Sun et al., A broadband UV-visible photodetector based on a Ga2O3/BFO heterojunction. Phys. Scr. 96(12), 125823 (2021). https://doi.org/10.1088/1402-4896/ac2758
Y. Wang, Y. Tang, H. Li, Z. Yang, Q. Zhang et al., P-GaSe/n-Ga2O3 van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity. ACS Photonics 8(8), 2256–2264 (2021). https://doi.org/10.1021/acsphotonics.1c00015
X.Y. Sun, X.H. Chen, J.G. Hao, Z.P. Wang, Y. Xu et al., A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p–n heterojunction. Appl. Phys. Lett. 119(14), 141601 (2021). https://doi.org/10.1063/5.0059061
Q. Zhang, D. Dong, T. Zhang, T. Zhou, Y. Yang et al., Over 5 × 103-fold enhancement of responsivity in Ga2O3-based solar blind photodetector via acousto–photoelectric coupling. ACS Nano 17(23), 24033–24041 (2023). https://doi.org/10.1021/acsnano.3c08938
M. Ding, K. Liang, S. Yu, X. Zhao, H. Ren et al., Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv. Opt. Mater. 10(16), 2200512 (2022). https://doi.org/10.1002/adom.202200512
W. Zhang, W. Wang, J. Wei, S. Xia, J. Zhang et al., Photocarrier transport reconstruction and dramatical performance enhancement in ultrawide-bandgap ε-Ga2O3 photodetectors via surface defect passivation. Mater. Today Phys. 38, 101280 (2023). https://doi.org/10.1016/j.mtphys.2023.101280
L. Gao, P.-Y. Chen, S. Yu, NbOx based oscillation neuron for neuromorphic computing. Appl. Phys. Lett. 111(10), 103503 (2017). https://doi.org/10.1063/1.4991917