Wafer-Level Self-Assembly and Interface Passivation Patterning Technology for Nanomaterial-Compatible 3D MEMS Sensing Chips
Corresponding Author: Guotao Duan
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 221
Abstract
Wafer-scale fabrication of high-performance micro-electro-mechanical systems (MEMS) bio/chemical sensing chips remains constrained by the absence of reliable methods for integrating high-performance nanomaterials into suspended MEMS architectures. Here, a wafer-level manufacturing strategy is presented that redefines the MEMS process flow as “film first, cantilever later.” Through kinetically controlled self-assembly, wet-chemically synthesized Pd/SnO2 nanospheres are transferred as dense, uniform monolithic films onto 8-inch wafers. An HfO2 interface passivation patterning technology resolves long-standing incompatibility between functional sensing films and silicon substrates, enabling precise patterning and reliable integration on suspended MEMS cantilevers. The resulting Pd/SnO2 MEMS H2 chips are fabricated onto an 8-inch wafer, demonstrating high sensitivity and consistency. This approach overcomes long-standing wafer-level manufacturing challenges in the formation and patterning of high-performance nanomaterials film, establishing a fully integrated wafer-level process that fundamentally redefines the manufacturing route for tetramethylammonium hydroxide-resistant nanomaterial-based MEMS sensing chips.
Highlights:
1 Wafer-scale, kinetically controlled self-assembly combined with edge-controlled lift-off enables uniform and precisely patterned nanomaterial films on 8-inch wafers.
2 HfO2 interface passivation eliminates wet etching failures and ensures reliable integration with suspended microelectro-mechanical systems (MEMS) structures.
3 A“film-first, cantilever-later” strategy realizes 3D MEMS gas sensing chips with accurate nanomaterial incorporation, delivering high H2 sensitivity and uniformity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32(51), 2002075 (2020). https://doi.org/10.1002/adma.202002075
- J. Wang, Y. Luo, X.J. Loh, X. Chen, Integrated multimodal sensing for scent digitalization. Matter 7(7), 2368–2381 (2024). https://doi.org/10.1016/j.matt.2024.05.040
- C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness et al., Smart single-chip gas sensor microsystem. Nature 414(6861), 293–296 (2001). https://doi.org/10.1038/35104535
- S.-W. Lee, M. Kang, J.-K. Han, S.-Y. Yun, I. Park et al., An artificial olfactory sensory neuron for selective gas detection with in-sensor computing. Device 1(3), 100063 (2023). https://doi.org/10.1016/j.device.2023.100063
- H. Mei, J. Peng, T. Wang, T. Zhou, H. Zhao et al., Overcoming the limits of cross-sensitivity: pattern recognition methods for chemiresistive gas sensor array. Nano-Micro Lett. 16(1), 269 (2024). https://doi.org/10.1007/s40820-024-01489-z
- B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17(1), 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
- Z. Dai, L. Xu, G. Duan, T. Li, H. Zhang et al., Fast-response, sensitivitive and low-powered chemosensors by fusing nanostructured porous thin film and IDEs-microheater chip. Sci. Rep. 3, 1669 (2013). https://doi.org/10.1038/srep01669
- A.T. Güntner, V. Koren, K. Chikkadi, M. Righettoni, S.E. Pratsinis, E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 1(5), 528–535 (2016). https://doi.org/10.1021/acssensors.6b00008
- J.-K. Han, M. Kang, J. Jeong, I. Cho, J.-M. Yu et al., Artificial olfactory neuron for an in-sensor neuromorphic nose. Adv. Sci. 9(18), 2106017 (2022). https://doi.org/10.1002/advs.202106017
- C. Wang, Z. Chen, C.L.J. Chan, Z.-A. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7(2), 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
- J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger et al., Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000). https://doi.org/10.1126/science.288.5464.316
- D.R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C.L. Britton et al., Design and performance of a microcantilever-based hydrogen sensor. Sens. Actuators B Chem. 88(2), 120–131 (2003). https://doi.org/10.1016/S0925-4005(02)00315-5
- G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, H. Rohrer, Nanomechanical membrane-type surface stress sensor. Nano Lett. 11(3), 1044–1048 (2011). https://doi.org/10.1021/nl103901a
- L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15(1), 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
- L.-X. Ou, M.-Y. Liu, L.-Y. Zhu, D.W. Zhang, H.-L. Lu, Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano-Micro Lett. 14(1), 206 (2022). https://doi.org/10.1007/s40820-022-00956-9
- J. Yun, J.-H. Ahn, D.-I. Moon, Y.-K. Choi, I. Park, Joule-heated and suspended silicon nanowire based sensor for low-power and stable hydrogen detection. ACS Appl. Mater. Interfaces 11(45), 42349–42357 (2019). https://doi.org/10.1021/acsami.9b15111
- S. Kim, Y. Kim, J. Kim, S.J. Kim, T. Kim et al., Highly selective ammonia detection in NiO-functionalized graphene micropatterns for beef quality monitoring. Adv. Funct. Mater. 34(46), 2407885 (2024). https://doi.org/10.1002/adfm.202407885
- Y. Jiang, S. Shi, S. Wang, F. Du, P. Wang et al., In-sensor reservoir computing for gas pattern recognition using Pt-AlGaN/GaN HEMTs. Device 3(1), 100550 (2025). https://doi.org/10.1016/j.device.2024.100550
- L. Liu, Y. Wang, F. Sun, Y. Dai, S. Wang et al., “Top-down” and “bottom-up” strategies for wafer-scaled miniaturized gas sensors design and fabrication. Microsyst. Nanoeng. 6, 31 (2020). https://doi.org/10.1038/s41378-020-0144-4
- M. Guo, J.T. Brewster, H. Zhang, Y. Zhao, Y. Zhao, Challenges and opportunities of chemiresistors based on microelectromechanical systems for chemical olfaction. Nano Lett. 16(11), 17778–17801 (2022). https://doi.org/10.1021/acsnano.2c08650
- F. Xue, G. Adedokun, D. Xie, R. Liu, Y. Zhang et al., A low power four-channel metal oxide semiconductor gas sensor array with T-shaped structure. J. Microelectromech. Syst. 31(2), 275–282 (2022). https://doi.org/10.1109/JMEMS.2022.3142155
- Y. Zhao, H. Zhang, S. Zhang, Y. Zhao, Toward highly trustable miniaturized semiconductor gas sensors. Matter 5(7), 1985–1989 (2022). https://doi.org/10.1016/j.matt.2022.05.028
- B. Raman, D.C. Meier, J.K. Evju, S. Semancik, Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens. Actuat. B Chem. 137(2), 617–629 (2009). https://doi.org/10.1016/j.snb.2008.11.053
- I. Cho, K. Kang, D. Yang, J. Yun, I. Park, Localized liquid-phase synthesis of porous SnO2 nanotubes on MEMS platform for low-power, high performance gas sensors. ACS Appl. Mater. Interfaces 9(32), 27111–27119 (2017). https://doi.org/10.1021/acsami.7b04850
- C.S. Prajapati, R. Soman, S.B. Rudraswamy, M. Nayak, N. Bhat, Single chip gas sensor array for air quality monitoring. J. Microelectromech. Syst. 26(2), 433–439 (2017). https://doi.org/10.1109/JMEMS.2017.2657788
- Z. Zhang, L. Luo, Y. Zhang, G. Lv, Y. Luo et al., Wafer-level manufacturing of MEMS H2 sensing chips based on Pd nanops modified SnO2 film patterns. Adv. Sci. 10(26), 2302614 (2023). https://doi.org/10.1002/advs.202302614
- K. Kang, D. Yang, J. Park, S. Kim, I. Cho et al., Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing towards highly integrated and multiplexed gas sensor applications. Sens. Actuators B Chem. 250, 574–583 (2017). https://doi.org/10.1016/j.snb.2017.04.194
- L. Xu, Z. Dai, G. Duan, L. Guo, Y. Wang et al., Micro/nano gas sensors: a new strategy towards in-situ wafer-level fabrication of high-performance gas sensing chips. Sci. Rep. 5, 10507 (2015). https://doi.org/10.1038/srep10507
- W. Tang, Z. Chen, Z. Song, C. Wang, Z. Wan et al., Microheater integrated nanotube array gas sensor for parts-per-trillion level gas detection and single sensor-based gas discrimination. Nano Lett. 16(7), 10968–10978 (2022). https://doi.org/10.1021/acsnano.2c03372
- B. Liu, L. Gao, F. Zhou, G. Duan, Preferentially epitaxial growth of β-FeOOH nanoflakes on SnO2 hollow spheres allows the synthesis of SnO2/α-Fe2O3 hetero-nanocomposites with enhanced gas sensing performance for dimethyl disulfide. Sens. Actuators B Chem. 272, 348–360 (2018). https://doi.org/10.1016/j.snb.2018.06.002
- T.S. EL-Shazly, G.E. Khedr, S.S. Abd El Rehim, Unraveling the effect of sulfur doping into electronic and optical performance of monoclinic hafnium dioxide (m-HfO2: S): an (DFT + U) insights report. Appl. Phys. A 128(6), 489 (2022). https://doi.org/10.1007/s00339-022-05643-5
- Z. Zhang, L. Luo, Y. Luo, Z. Zhang, C. Xing et al., High-density integration of multiple independent temperature-controlled micro hotplates for MEMS gas sensors. 2023 IEEE SENSORS. 1–4. IEEE (2023). https://doi.org/10.1109/SENSORS56945.2023.10325133
- G. Yang, Z. Zhang, Y.-L. Zhang, Y.-Y. Luo, X. Xiong et al., Thermal simulation of micro hotplate for multiple MEMS gas sensors. Chin. J. Anal. Chem. 50(1), 38–43 (2022). https://doi.org/10.1016/j.cjac.2021.11.001
- G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295(5564), 2418–2421 (2002). https://doi.org/10.1126/science.1070821
- D. Liu, R. Aleisa, Z. Cai, Y. Li, Y. Yin, Self-assembly of superstructures at all scales. Matter 4(3), 927–941 (2021). https://doi.org/10.1016/j.matt.2020.12.020
- N.B. Bowden, M. Weck, I.S. Choi, G.M. Whitesides, Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res. 34(3), 231–238 (2001). https://doi.org/10.1021/ar0000760
- J.-J. Shao, W. Lv, Q.-H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586–5612 (2014). https://doi.org/10.1002/adma.201400267
- V.L. Nguyen, M. Seol, J. Kwon, E.-K. Lee, W.-J. Jang et al., Wafer-scale integration of transition metal dichalcogenide field-effect transistors using adhesion lithography. Nat. Electron. 6(2), 146–153 (2023). https://doi.org/10.1038/s41928-022-00890-z
- M. Ristić, M. Ivanda, S. Popović, S. Musić, Dependence of nanocrystalline SnO2 p size on synthesis route. J. Non-Cryst. Solids 303(2), 270–280 (2002). https://doi.org/10.1016/S0022-3093(02)00944-4
- X. Fan, S. Wagner, P. Schädlich, F. Speck, S. Kataria et al., Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Sci. Adv. 4(5), eaar5170 (2018). https://doi.org/10.1126/sciadv.aar5170
- P. Pal, V. Swarnalatha, A.V.N. Rao, A.K. Pandey, H. Tanaka et al., High speed silicon wet anisotropic etching for applications in bulk micromachining: a review. Micro and Nano Systems Letters 9(1), 4 (2021). https://doi.org/10.1186/s40486-021-00129-0
- H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions: II. influence of dopants. J. Electrochem. Soc. 137(11), 3626–3632 (1990). https://doi.org/10.1149/1.2086278
- J.G. Hooley, The kinetics of the reaction of silica with group i hydroxides. Can. J. Chem. 39(6), 1221–1230 (1961). https://doi.org/10.1139/v61-155
- P.F. Satterthwaite, W. Zhu, P. Jastrzebska-Perfect, M. Tang, S.O. Spector et al., Van der Waals device integration beyond the limits of van der Waals forces using adhesive matrix transfer. Nat. Electron. 7(1), 17–28 (2024). https://doi.org/10.1038/s41928-023-01079-8
- J. Kang, J. Mun, Y. Zheng, M. Koizumi, N. Matsuhisa et al., Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors. Nat. Nanotechnol. 17(12), 1265–1271 (2022). https://doi.org/10.1038/s41565-022-01246-6
- M. Hoffmann, S. Slesazeck, U. Schroeder, T. Mikolajick, What’s next for negative capacitance electronics? Nat. Electron. 3(9), 504–506 (2020). https://doi.org/10.1038/s41928-020-00474-9
- M. Pei, Y. Zhu, S. Liu, H. Cui, Y. Li et al., Power-efficient multisensory reservoir computing based on Zr-doped HfO2 memcapacitive synapse arrays. Adv. Mater. 35(41), 2305609 (2023). https://doi.org/10.1002/adma.202305609
- M. Chae, D. Lee, H.-D. Kim, Dynamic response and swift recovery of filament heater-integrated low-power transparent CNT gas sensor. Adv. Funct. Mater. 34(49), 2405260 (2024). https://doi.org/10.1002/adfm.202405260
- M. Claes, S. De Gendt, T. Witters, V. Kaushik, T. Conard et al., Effect of postdeposition anneal conditions on defect density of HfO2 layers measured by wet etching. J. Electrochem. Soc. 151(11), F269 (2004). https://doi.org/10.1149/1.1802134
- T. Kang, J. Park, H. Jung, H. Choi, S.-M. Lee et al., High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices. Adv. Mater. 36(26), 2312747 (2024). https://doi.org/10.1002/adma.202312747
- T.L. Duan, H.Y. Yu, L. Wu, Z.R. Wang, Y.L. Foo et al., Investigation of HfO2 high-k dielectrics electronic structure on SiO2/Si substrate by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 99, 012902 (2011). https://doi.org/10.1063/1.3609233
- D.-Y. Cho, S.-J. Oh, Y.J. Chang, T.W. Noh, R. Jung et al., Role of oxygen vacancy in HfO2∕SiO2∕Si(100) interfaces. Appl. Phys. Lett. 88(19), 193502 (2006). https://doi.org/10.1063/1.2201050
- G. He, L.D. Zhang, G.W. Meng, G.H. Li, G.T. Fei et al., Composition dependence of electronic structure and optical properties of Hf1–xSixOy gate dielectrics. J. Appl. Phys. 104(10), 104116 (2008). https://doi.org/10.1063/1.3029664
- J. Liu, X. Ling, X. Liu, Mechanism of annealing effect on damage threshold enhancement of HfO2 films in vacuum. Vacuum 189, 110266 (2021). https://doi.org/10.1016/j.vacuum.2021.110266
- W. Wang, N. Clark, M. Hamer, A. Carl, E. Tovari et al., Clean assembly of van der Waals heterostructures using silicon nitride membranes. Nat. Electron. 6(12), 981–990 (2023). https://doi.org/10.1038/s41928-023-01075-y
- C. Xing, R. Liu, Y. Zhang, D. Xie, Y. Wang et al., Single-layer-electrode temperature-modulated SNO2 gas sensor cell with low power consumption for discrimination of food odors. 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS)., 263–266. IEEE (2023). https://doi.org/10.1109/MEMS49605.2023.10052255
- N. Luo, H. Cai, B. Lu, Z. Xue, J. Xu, Pt-functionalized amorphous RuOx as excellent stability and high-activity catalysts for low temperature MEMS sensors. Small 19(32), 2300006 (2023). https://doi.org/10.1002/smll.202300006
- Y. Chen, P. Xu, X. Li, Y. Ren, Y. Deng, High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sens. Actuat. B Chem. 267, 83–92 (2018). https://doi.org/10.1016/j.snb.2018.03.180
- N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143–167 (2001). https://doi.org/10.1023/A:1014405811371
- N. Luo, C. Wang, D. Zhang, M. Guo, X. Wang et al., Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sensors Actuators B Chem 354, 130982 (2022). https://doi.org/10.1016/j.snb.2021.130982
- Z. Li, S. Yaseen, S. Jia, Z. Guo, L. Zhang et al., High performance room-temperature hydrogen sensor using MOF-derived porous Pd@SnO2 composite. Sensors Actuators B Chem 447, 138769 (2026). https://doi.org/10.1016/j.snb.2025.138769
- Z. Yang, Q. Rong, W. Zhang, X. Fan, M. Shao et al., A ZnO packaged MEMS hydrogen sensor for reliable SIBO breath analysis with anti-H2S interference. Chem. Eng. J. 522, 167331 (2025). https://doi.org/10.1016/j.cej.2025.167331
- Y. Qian, G. Zhao, C. Zhang, S. Yin, J. Chen et al., Hydrogen sensing with high-performance via O- ion spillover at Pd single atoms stabilized SnO2 interface. Commun. Mater. 6, 137 (2025). https://doi.org/10.1038/s43246-025-00865-5
- Y. Li, Y. Cao, X. Jia, Y. Jiang, Z. Xue et al., Inhibiting emulative oxygen adsorption via introducing Pt-segregated sites into the Pd surface for enhanced H2 sensing in air. ACS Sens. 9(10), 5405–5413 (2024). https://doi.org/10.1021/acssensors.4c01622
- H. Li, C.-H. Wu, Y.-C. Liu, S.-H. Yuan, Z.-X. Chiang et al., Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors Actuators B Chem 341, 130035 (2021). https://doi.org/10.1016/j.snb.2021.130035
- Q. Chen, Y. Zhang, M. Tang, Z. Wang, D. Zhang, A fast response hydrogen sensor based on the heterojunction of MXene and SnO2 nanosheets for lithium-ion battery failure detection. Sensors Actuators B Chem 405, 135229 (2024). https://doi.org/10.1016/j.snb.2023.135229
- G. Korotcenkov, B.K. Cho, Thin film SnO2-based gas sensors: film thickness influence. Sens. Actuators B Chem. 142(1), 321–330 (2009). https://doi.org/10.1016/j.snb.2009.08.006
- G. Yergaliuly, B. Soltabayev, S. Kalybekkyzy, Z. Bakenov, A. Mentbayeva, Effect of thickness and reaction media on properties of ZnO thin films by SILAR. Sci. Rep. 12(1), 851 (2022). https://doi.org/10.1038/s41598-022-04782-2
- Y. Tan, B. Du, C. Liang, X. Guo, H. Zheng et al., Improving anti-humidity property of a SnO2-based chemiresistive hydrogen sensor by a breathable and hydrophobic fluoropolymer coating. Langmuir 38(45), 13833–13840 (2022). https://doi.org/10.1021/acs.langmuir.2c01982
- X. Meng, M. Bi, W. Gao, Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sens. Actuat. B Chem. 370, 132406 (2022). https://doi.org/10.1016/j.snb.2022.132406
References
S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32(51), 2002075 (2020). https://doi.org/10.1002/adma.202002075
J. Wang, Y. Luo, X.J. Loh, X. Chen, Integrated multimodal sensing for scent digitalization. Matter 7(7), 2368–2381 (2024). https://doi.org/10.1016/j.matt.2024.05.040
C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness et al., Smart single-chip gas sensor microsystem. Nature 414(6861), 293–296 (2001). https://doi.org/10.1038/35104535
S.-W. Lee, M. Kang, J.-K. Han, S.-Y. Yun, I. Park et al., An artificial olfactory sensory neuron for selective gas detection with in-sensor computing. Device 1(3), 100063 (2023). https://doi.org/10.1016/j.device.2023.100063
H. Mei, J. Peng, T. Wang, T. Zhou, H. Zhao et al., Overcoming the limits of cross-sensitivity: pattern recognition methods for chemiresistive gas sensor array. Nano-Micro Lett. 16(1), 269 (2024). https://doi.org/10.1007/s40820-024-01489-z
B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17(1), 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
Z. Dai, L. Xu, G. Duan, T. Li, H. Zhang et al., Fast-response, sensitivitive and low-powered chemosensors by fusing nanostructured porous thin film and IDEs-microheater chip. Sci. Rep. 3, 1669 (2013). https://doi.org/10.1038/srep01669
A.T. Güntner, V. Koren, K. Chikkadi, M. Righettoni, S.E. Pratsinis, E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 1(5), 528–535 (2016). https://doi.org/10.1021/acssensors.6b00008
J.-K. Han, M. Kang, J. Jeong, I. Cho, J.-M. Yu et al., Artificial olfactory neuron for an in-sensor neuromorphic nose. Adv. Sci. 9(18), 2106017 (2022). https://doi.org/10.1002/advs.202106017
C. Wang, Z. Chen, C.L.J. Chan, Z.-A. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7(2), 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger et al., Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000). https://doi.org/10.1126/science.288.5464.316
D.R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C.L. Britton et al., Design and performance of a microcantilever-based hydrogen sensor. Sens. Actuators B Chem. 88(2), 120–131 (2003). https://doi.org/10.1016/S0925-4005(02)00315-5
G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, H. Rohrer, Nanomechanical membrane-type surface stress sensor. Nano Lett. 11(3), 1044–1048 (2011). https://doi.org/10.1021/nl103901a
L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15(1), 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
L.-X. Ou, M.-Y. Liu, L.-Y. Zhu, D.W. Zhang, H.-L. Lu, Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor. Nano-Micro Lett. 14(1), 206 (2022). https://doi.org/10.1007/s40820-022-00956-9
J. Yun, J.-H. Ahn, D.-I. Moon, Y.-K. Choi, I. Park, Joule-heated and suspended silicon nanowire based sensor for low-power and stable hydrogen detection. ACS Appl. Mater. Interfaces 11(45), 42349–42357 (2019). https://doi.org/10.1021/acsami.9b15111
S. Kim, Y. Kim, J. Kim, S.J. Kim, T. Kim et al., Highly selective ammonia detection in NiO-functionalized graphene micropatterns for beef quality monitoring. Adv. Funct. Mater. 34(46), 2407885 (2024). https://doi.org/10.1002/adfm.202407885
Y. Jiang, S. Shi, S. Wang, F. Du, P. Wang et al., In-sensor reservoir computing for gas pattern recognition using Pt-AlGaN/GaN HEMTs. Device 3(1), 100550 (2025). https://doi.org/10.1016/j.device.2024.100550
L. Liu, Y. Wang, F. Sun, Y. Dai, S. Wang et al., “Top-down” and “bottom-up” strategies for wafer-scaled miniaturized gas sensors design and fabrication. Microsyst. Nanoeng. 6, 31 (2020). https://doi.org/10.1038/s41378-020-0144-4
M. Guo, J.T. Brewster, H. Zhang, Y. Zhao, Y. Zhao, Challenges and opportunities of chemiresistors based on microelectromechanical systems for chemical olfaction. Nano Lett. 16(11), 17778–17801 (2022). https://doi.org/10.1021/acsnano.2c08650
F. Xue, G. Adedokun, D. Xie, R. Liu, Y. Zhang et al., A low power four-channel metal oxide semiconductor gas sensor array with T-shaped structure. J. Microelectromech. Syst. 31(2), 275–282 (2022). https://doi.org/10.1109/JMEMS.2022.3142155
Y. Zhao, H. Zhang, S. Zhang, Y. Zhao, Toward highly trustable miniaturized semiconductor gas sensors. Matter 5(7), 1985–1989 (2022). https://doi.org/10.1016/j.matt.2022.05.028
B. Raman, D.C. Meier, J.K. Evju, S. Semancik, Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens. Actuat. B Chem. 137(2), 617–629 (2009). https://doi.org/10.1016/j.snb.2008.11.053
I. Cho, K. Kang, D. Yang, J. Yun, I. Park, Localized liquid-phase synthesis of porous SnO2 nanotubes on MEMS platform for low-power, high performance gas sensors. ACS Appl. Mater. Interfaces 9(32), 27111–27119 (2017). https://doi.org/10.1021/acsami.7b04850
C.S. Prajapati, R. Soman, S.B. Rudraswamy, M. Nayak, N. Bhat, Single chip gas sensor array for air quality monitoring. J. Microelectromech. Syst. 26(2), 433–439 (2017). https://doi.org/10.1109/JMEMS.2017.2657788
Z. Zhang, L. Luo, Y. Zhang, G. Lv, Y. Luo et al., Wafer-level manufacturing of MEMS H2 sensing chips based on Pd nanops modified SnO2 film patterns. Adv. Sci. 10(26), 2302614 (2023). https://doi.org/10.1002/advs.202302614
K. Kang, D. Yang, J. Park, S. Kim, I. Cho et al., Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing towards highly integrated and multiplexed gas sensor applications. Sens. Actuators B Chem. 250, 574–583 (2017). https://doi.org/10.1016/j.snb.2017.04.194
L. Xu, Z. Dai, G. Duan, L. Guo, Y. Wang et al., Micro/nano gas sensors: a new strategy towards in-situ wafer-level fabrication of high-performance gas sensing chips. Sci. Rep. 5, 10507 (2015). https://doi.org/10.1038/srep10507
W. Tang, Z. Chen, Z. Song, C. Wang, Z. Wan et al., Microheater integrated nanotube array gas sensor for parts-per-trillion level gas detection and single sensor-based gas discrimination. Nano Lett. 16(7), 10968–10978 (2022). https://doi.org/10.1021/acsnano.2c03372
B. Liu, L. Gao, F. Zhou, G. Duan, Preferentially epitaxial growth of β-FeOOH nanoflakes on SnO2 hollow spheres allows the synthesis of SnO2/α-Fe2O3 hetero-nanocomposites with enhanced gas sensing performance for dimethyl disulfide. Sens. Actuators B Chem. 272, 348–360 (2018). https://doi.org/10.1016/j.snb.2018.06.002
T.S. EL-Shazly, G.E. Khedr, S.S. Abd El Rehim, Unraveling the effect of sulfur doping into electronic and optical performance of monoclinic hafnium dioxide (m-HfO2: S): an (DFT + U) insights report. Appl. Phys. A 128(6), 489 (2022). https://doi.org/10.1007/s00339-022-05643-5
Z. Zhang, L. Luo, Y. Luo, Z. Zhang, C. Xing et al., High-density integration of multiple independent temperature-controlled micro hotplates for MEMS gas sensors. 2023 IEEE SENSORS. 1–4. IEEE (2023). https://doi.org/10.1109/SENSORS56945.2023.10325133
G. Yang, Z. Zhang, Y.-L. Zhang, Y.-Y. Luo, X. Xiong et al., Thermal simulation of micro hotplate for multiple MEMS gas sensors. Chin. J. Anal. Chem. 50(1), 38–43 (2022). https://doi.org/10.1016/j.cjac.2021.11.001
G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295(5564), 2418–2421 (2002). https://doi.org/10.1126/science.1070821
D. Liu, R. Aleisa, Z. Cai, Y. Li, Y. Yin, Self-assembly of superstructures at all scales. Matter 4(3), 927–941 (2021). https://doi.org/10.1016/j.matt.2020.12.020
N.B. Bowden, M. Weck, I.S. Choi, G.M. Whitesides, Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res. 34(3), 231–238 (2001). https://doi.org/10.1021/ar0000760
J.-J. Shao, W. Lv, Q.-H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586–5612 (2014). https://doi.org/10.1002/adma.201400267
V.L. Nguyen, M. Seol, J. Kwon, E.-K. Lee, W.-J. Jang et al., Wafer-scale integration of transition metal dichalcogenide field-effect transistors using adhesion lithography. Nat. Electron. 6(2), 146–153 (2023). https://doi.org/10.1038/s41928-022-00890-z
M. Ristić, M. Ivanda, S. Popović, S. Musić, Dependence of nanocrystalline SnO2 p size on synthesis route. J. Non-Cryst. Solids 303(2), 270–280 (2002). https://doi.org/10.1016/S0022-3093(02)00944-4
X. Fan, S. Wagner, P. Schädlich, F. Speck, S. Kataria et al., Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Sci. Adv. 4(5), eaar5170 (2018). https://doi.org/10.1126/sciadv.aar5170
P. Pal, V. Swarnalatha, A.V.N. Rao, A.K. Pandey, H. Tanaka et al., High speed silicon wet anisotropic etching for applications in bulk micromachining: a review. Micro and Nano Systems Letters 9(1), 4 (2021). https://doi.org/10.1186/s40486-021-00129-0
H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions: II. influence of dopants. J. Electrochem. Soc. 137(11), 3626–3632 (1990). https://doi.org/10.1149/1.2086278
J.G. Hooley, The kinetics of the reaction of silica with group i hydroxides. Can. J. Chem. 39(6), 1221–1230 (1961). https://doi.org/10.1139/v61-155
P.F. Satterthwaite, W. Zhu, P. Jastrzebska-Perfect, M. Tang, S.O. Spector et al., Van der Waals device integration beyond the limits of van der Waals forces using adhesive matrix transfer. Nat. Electron. 7(1), 17–28 (2024). https://doi.org/10.1038/s41928-023-01079-8
J. Kang, J. Mun, Y. Zheng, M. Koizumi, N. Matsuhisa et al., Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors. Nat. Nanotechnol. 17(12), 1265–1271 (2022). https://doi.org/10.1038/s41565-022-01246-6
M. Hoffmann, S. Slesazeck, U. Schroeder, T. Mikolajick, What’s next for negative capacitance electronics? Nat. Electron. 3(9), 504–506 (2020). https://doi.org/10.1038/s41928-020-00474-9
M. Pei, Y. Zhu, S. Liu, H. Cui, Y. Li et al., Power-efficient multisensory reservoir computing based on Zr-doped HfO2 memcapacitive synapse arrays. Adv. Mater. 35(41), 2305609 (2023). https://doi.org/10.1002/adma.202305609
M. Chae, D. Lee, H.-D. Kim, Dynamic response and swift recovery of filament heater-integrated low-power transparent CNT gas sensor. Adv. Funct. Mater. 34(49), 2405260 (2024). https://doi.org/10.1002/adfm.202405260
M. Claes, S. De Gendt, T. Witters, V. Kaushik, T. Conard et al., Effect of postdeposition anneal conditions on defect density of HfO2 layers measured by wet etching. J. Electrochem. Soc. 151(11), F269 (2004). https://doi.org/10.1149/1.1802134
T. Kang, J. Park, H. Jung, H. Choi, S.-M. Lee et al., High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices. Adv. Mater. 36(26), 2312747 (2024). https://doi.org/10.1002/adma.202312747
T.L. Duan, H.Y. Yu, L. Wu, Z.R. Wang, Y.L. Foo et al., Investigation of HfO2 high-k dielectrics electronic structure on SiO2/Si substrate by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 99, 012902 (2011). https://doi.org/10.1063/1.3609233
D.-Y. Cho, S.-J. Oh, Y.J. Chang, T.W. Noh, R. Jung et al., Role of oxygen vacancy in HfO2∕SiO2∕Si(100) interfaces. Appl. Phys. Lett. 88(19), 193502 (2006). https://doi.org/10.1063/1.2201050
G. He, L.D. Zhang, G.W. Meng, G.H. Li, G.T. Fei et al., Composition dependence of electronic structure and optical properties of Hf1–xSixOy gate dielectrics. J. Appl. Phys. 104(10), 104116 (2008). https://doi.org/10.1063/1.3029664
J. Liu, X. Ling, X. Liu, Mechanism of annealing effect on damage threshold enhancement of HfO2 films in vacuum. Vacuum 189, 110266 (2021). https://doi.org/10.1016/j.vacuum.2021.110266
W. Wang, N. Clark, M. Hamer, A. Carl, E. Tovari et al., Clean assembly of van der Waals heterostructures using silicon nitride membranes. Nat. Electron. 6(12), 981–990 (2023). https://doi.org/10.1038/s41928-023-01075-y
C. Xing, R. Liu, Y. Zhang, D. Xie, Y. Wang et al., Single-layer-electrode temperature-modulated SNO2 gas sensor cell with low power consumption for discrimination of food odors. 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS)., 263–266. IEEE (2023). https://doi.org/10.1109/MEMS49605.2023.10052255
N. Luo, H. Cai, B. Lu, Z. Xue, J. Xu, Pt-functionalized amorphous RuOx as excellent stability and high-activity catalysts for low temperature MEMS sensors. Small 19(32), 2300006 (2023). https://doi.org/10.1002/smll.202300006
Y. Chen, P. Xu, X. Li, Y. Ren, Y. Deng, High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sens. Actuat. B Chem. 267, 83–92 (2018). https://doi.org/10.1016/j.snb.2018.03.180
N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7(3), 143–167 (2001). https://doi.org/10.1023/A:1014405811371
N. Luo, C. Wang, D. Zhang, M. Guo, X. Wang et al., Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sensors Actuators B Chem 354, 130982 (2022). https://doi.org/10.1016/j.snb.2021.130982
Z. Li, S. Yaseen, S. Jia, Z. Guo, L. Zhang et al., High performance room-temperature hydrogen sensor using MOF-derived porous Pd@SnO2 composite. Sensors Actuators B Chem 447, 138769 (2026). https://doi.org/10.1016/j.snb.2025.138769
Z. Yang, Q. Rong, W. Zhang, X. Fan, M. Shao et al., A ZnO packaged MEMS hydrogen sensor for reliable SIBO breath analysis with anti-H2S interference. Chem. Eng. J. 522, 167331 (2025). https://doi.org/10.1016/j.cej.2025.167331
Y. Qian, G. Zhao, C. Zhang, S. Yin, J. Chen et al., Hydrogen sensing with high-performance via O- ion spillover at Pd single atoms stabilized SnO2 interface. Commun. Mater. 6, 137 (2025). https://doi.org/10.1038/s43246-025-00865-5
Y. Li, Y. Cao, X. Jia, Y. Jiang, Z. Xue et al., Inhibiting emulative oxygen adsorption via introducing Pt-segregated sites into the Pd surface for enhanced H2 sensing in air. ACS Sens. 9(10), 5405–5413 (2024). https://doi.org/10.1021/acssensors.4c01622
H. Li, C.-H. Wu, Y.-C. Liu, S.-H. Yuan, Z.-X. Chiang et al., Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors Actuators B Chem 341, 130035 (2021). https://doi.org/10.1016/j.snb.2021.130035
Q. Chen, Y. Zhang, M. Tang, Z. Wang, D. Zhang, A fast response hydrogen sensor based on the heterojunction of MXene and SnO2 nanosheets for lithium-ion battery failure detection. Sensors Actuators B Chem 405, 135229 (2024). https://doi.org/10.1016/j.snb.2023.135229
G. Korotcenkov, B.K. Cho, Thin film SnO2-based gas sensors: film thickness influence. Sens. Actuators B Chem. 142(1), 321–330 (2009). https://doi.org/10.1016/j.snb.2009.08.006
G. Yergaliuly, B. Soltabayev, S. Kalybekkyzy, Z. Bakenov, A. Mentbayeva, Effect of thickness and reaction media on properties of ZnO thin films by SILAR. Sci. Rep. 12(1), 851 (2022). https://doi.org/10.1038/s41598-022-04782-2
Y. Tan, B. Du, C. Liang, X. Guo, H. Zheng et al., Improving anti-humidity property of a SnO2-based chemiresistive hydrogen sensor by a breathable and hydrophobic fluoropolymer coating. Langmuir 38(45), 13833–13840 (2022). https://doi.org/10.1021/acs.langmuir.2c01982
X. Meng, M. Bi, W. Gao, Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sens. Actuat. B Chem. 370, 132406 (2022). https://doi.org/10.1016/j.snb.2022.132406