One-Step Formation of 2D/3D Perovskite Heterojunction via Ligand Intercalation and Facet Engineering for Efficient Perovskite Solar Cells
Corresponding Author: Stefaan De Wolf
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 240
Abstract
Two-dimensional/three-dimensional (2D/3D) perovskite heterojunctions at the contact interfaces have been proven to enhance the stability and power conversion efficiency (PCE) of perovskite solar cells (PSCs). The 2D/3D bilayer is typically formed via a solution post-treatment onto the 3D perovskite, where the 2D layer’s dimensionality depends on the ligand size and its reactivity. Despite their stability, long-chain ligands typically form 2D perovskites with low dimensionality (n = 1, 2) which feature poor charge conductivity and mobility. Here, we propose an in situ fabrication method incorporating long-chain oleylammonium (OlyA+) ligands directly into the perovskite ink. This approach forms 2D perovskite with higher dimensionalities (n ≥ 3) with enhanced (001) crystal facet orientation of the 3D film, improved energetic alignment, charge extraction, and structural stability. The fabricated inverted PSCs with 1.55 eV bandgap achieved a maximum PCE of 26.22% for small area and 24.6% for 1cm2 devices, as well as 21.1% for mini-modules (6.8 cm2). Additionally, the PSCs with in situ formed 2D/3D perovskite heterojunctions retained 90% and 80% of their initial PCE after 1200 h photothermal stability and 1050 h outdoor testing, respectively. Our one-step strategy produces uniform and stable 2D/3D perovskite heterojunctions with enhanced passivation capability, overcoming the limitations of conventional sequential methods and offering a promising and effective approach for highly stable and efficient PSCs.
Highlights:
1 One-step in-situ incorporation of long-chain oleylammonium ligands enables simultaneous crystallographic orientation control and 2D/3D heterojunction formation in inverted perovskite solar cells.
2 Facet engineering promotes dominant (001) orientation and higher-dimensional 2D phases (n ≥ 3) for improved energy alignment and charge extraction.
3 Achieved power conversion efficiencies of 26.22% (0.1 cm2), 24.6% (1 cm2), and 21.1% (6.8 cm2 mini-modules) with excellent photothermal and outdoor stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, Y. He, L. Ding, H. Zhang et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
- E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623(7988), 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
- Y. Yang, H. Chen, C. Liu, J. Xu, C. Huang et al., Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science 386(6724), 898–902 (2024). https://doi.org/10.1126/science.adr2091
- L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15(1), 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
- X. Chang, R. Azmi, T. Yang, N. Wu, S.Y. Jeong et al., Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells. Nat. Commun. 16(1), 1042 (2025). https://doi.org/10.1038/s41467-025-56409-5
- J. Li, C. Jin, R. Jiang, J. Su, T. Tian et al., Homogeneous coverage of the low-dimensional perovskite passivation layer for formamidinium–caesium perovskite solar modules. Nat. Energy 9(12), 1540–1550 (2024). https://doi.org/10.1038/s41560-024-01667-8
- L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8(3), 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
- S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
- R. Azmi, D.S. Utomo, Y. Liu, S. Zhumagali, S. De Wolf, Dimensionality engineering of perovskites for stable heterojunction-based photovoltaics. Nat. Rev. Mater. 8, 47 (2025). https://doi.org/10.1038/s41578-025-00847-6
- F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375(6576), 71–76 (2022). https://doi.org/10.1126/science.abj2637
- G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15(9), 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
- H. Wang, S. Su, Y. Chen, M. Ren, S. Wang et al., Impurity-healing interface engineering for efficient perovskite submodules. Nature 634(8036), 1091–1095 (2024). https://doi.org/10.1038/s41586-024-08073-w
- H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16(5), 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
- T. Soto-Montero, S. Kralj, R. Azmi, M.A. Reus, J.S. Solomon et al., Single-source pulsed laser-deposited perovskite solar cells with enhanced performance via bulk and 2D passivation. Joule 8(12), 3412–3425 (2024). https://doi.org/10.1016/j.joule.2024.09.001
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- M.-C. Shih, S. Tan, Y. Lu, T. Kodalle, D.-K. Lee et al., A 2D/3D heterostructure perovskite solar cell with a phase-pure and pristine 2D layer. Adv. Mater. 37(17), 2416672 (2025). https://doi.org/10.1002/adma.202416672
- A.S. Subbiah, S. Mannar, V. Hnapovskyi, A.R. Pininti, B. Vishal et al., Efficient blade-coated perovskite/silicon tandems via interface engineering. Joule 9(1), 101767 (2025). https://doi.org/10.1016/j.joule.2024.09.014
- D. He, P. Chen, J.A. Steele, Z. Wang, H. Xu et al., Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20(6), 779–786 (2025). https://doi.org/10.1038/s41565-025-01905-4
- X. Zheng, S. Ahmed, Y. Zhang, G. Xu, J. Wang et al., Differentiating the 2D passivation from amorphous passivation in perovskite solar cells. Nano-Micro Lett. 18(1), 62 (2025). https://doi.org/10.1007/s40820-025-01913-y
- J. Zhang, J. Wu, S. Langner, B. Zhao, Z. Xie et al., Exploring the steric hindrance of alkylammonium cations in the structural reconfiguration of quasi-2D perovskite materials using a high-throughput experimental platform. Adv. Funct. Mater. 32(43), 2207101 (2022). https://doi.org/10.1002/adfm.202207101
- P. Liu, X. Li, T. Cai, W. Xing, N. Yang et al., Molecular structure tailoring of organic spacers for high-performance ruddlesden-popper perovskite solar cells. Nano-Micro Lett. 17(1), 35 (2024). https://doi.org/10.1007/s40820-024-01500-7
- Y. Gao, X. Dong, Y. Liu, Recent progress of layered perovskite solar cells incorporating aromatic spacers. Nano-Micro Lett. 15(1), 169 (2023). https://doi.org/10.1007/s40820-023-01141-2
- Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
- C. Ma, F.T. Eickemeyer, S.-H. Lee, D.-H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379(6628), 173–178 (2023). https://doi.org/10.1126/science.adf3349
- C. Ma, M. Grätzel, N.-G. Park, Facet engineering for stable, efficient perovskite solar cells. ACS Energy Lett. 7(9), 3120–3128 (2022). https://doi.org/10.1021/acsenergylett.2c01623
- L. Martínez-Sarti, S.H. Jo, Y.-H. Kim, M. Sessolo, F. Palazon et al., Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale 11(27), 12793–12797 (2019). https://doi.org/10.1039/c9nr04520a
- X. Zheng, A.Y. Alsalloum, Y. Hou, E.H. Sargent, O.M. Bakr, All-perovskite tandem solar cells: a roadmap to uniting high efficiency with high stability. Acc. Mater. Res. 1(1), 63–76 (2020). https://doi.org/10.1021/accountsmr.0c00017
- G. Dastgeer, M.W. Zulfiqar, S. Nisar, R. Zulfiqar, M. Imran et al., Emerging role of 2D materials in photovoltaics: efficiency enhancement and future perspectives. Nano-Micro Lett. 18(1), 32 (2025). https://doi.org/10.1007/s40820-025-01869-z
- X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
- C. Ma, M.-C. Kang, S.-H. Lee, S.J. Kwon, H.-W. Cha et al., Photovoltaically top-performing perovskite crystal facets. Joule 6(11), 2626–2643 (2022). https://doi.org/10.1016/j.joule.2022.09.012
- H.-W. Zhang, Y.-G. Bi, Y.-F. Wang, D.-M. Shan, C.-M. Jin et al., Dual-interface passivation to improve the efficiency and stability of inverted flexible perovskite solar cells by in situ constructing 2D/3D/2D perovskite double heterojunctions. J. Power. Sources 629, 235973 (2025). https://doi.org/10.1016/j.jpowsour.2024.235973
- X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
- Y. Zhang, Y. Wang, X. Yang, L. Zhao, R. Su et al., Mechanochemistry advances high-performance perovskite solar cells. Adv. Mater. 34(6), e2107420 (2022). https://doi.org/10.1002/adma.202107420
- S.S. Sangale, S.-N. Kwon, P. Patil, H.-J. Lee, S.-I. Na, Locally supersaturated inks for a slot-die process to enable highly efficient and robust perovskite solar cells. Adv. Energy Mater. 13(33), 2300537 (2023). https://doi.org/10.1002/aenm.202300537
- M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
- E. Ugur, E. Aydin, M. De Bastiani, G.T. Harrison, B.K. Yildirim et al., Front-contact passivation through 2D/3D perovskite heterojunctions enables efficient bifacial perovskite/silicon tandem solar cells. Matter 6(9), 2919–2934 (2023). https://doi.org/10.1016/j.matt.2023.05.028
- Y. Zou, Y. Cui, H.-Y. Wang, Q. Cai, C. Mu et al., Highly efficient and stable 2D–3D perovskite solar cells fabricated by interfacial modification. Nanotechnology 30(27), 275202 (2019). https://doi.org/10.1088/1361-6528/ab10f3
- M. Wang, Z. Shi, C. Fei, Z.J.D. Deng, G. Yang et al., Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8(11), 1229–1239 (2023). https://doi.org/10.1038/s41560-023-01362-0
- H. Li, C. Zhang, C. Gong, D. Zhang, H. Zhang et al., 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8(9), 946–955 (2023). https://doi.org/10.1038/s41560-023-01295-8
- C. Ma, M.-C. Kang, S.-H. Lee, Y. Zhang, D.-H. Kang et al., Facet-dependent passivation for efficient perovskite solar cells. J. Am. Chem. Soc. 145(44), 24349–24357 (2023). https://doi.org/10.1021/jacs.3c09327
- J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D Ruddlesden–Popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 15(1), 296–310 (2022). https://doi.org/10.1039/d1ee01695d
- P. Gao, A.R. Bin Mohd Yusoff, M.K. Nazeeruddin, Dimensionality engineering of hybrid halide perovskite light absorbers. Nat. Commun. 9(1), 5028 (2018). https://doi.org/10.1038/s41467-018-07382-9
- G. Walters, M. Wei, O. Voznyy, R. Quintero-Bermudez, A. Kiani et al., The quantum-confined Stark effect in layered hybrid perovskites mediated by orientational polarizability of confined dipoles. Nat. Commun. 9, 4214 (2018). https://doi.org/10.1038/s41467-018-06746-5
- Y. Lin, J. Tang, H. Yan, J. Lin, W. Wang et al., Ultra-large dipole moment organic cations derived 3D/2D p–n heterojunction for high-efficiency carbon-based perovskite solar cells. Energy Environ. Sci. 17(13), 4692–4702 (2024). https://doi.org/10.1039/d4ee00568f
- K.M. Yeom, C. Cho, E.H. Jung, G. Kim, C.S. Moon et al., Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices. Nat. Commun. 15(1), 4547 (2024). https://doi.org/10.1038/s41467-024-48887-w
- L.V. Torres Merino, C.E. Petoukhoff, O. Matiash, A.S. Subbiah, C.V. Franco et al., Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells. Joule 8(9), 2585–2606 (2024). https://doi.org/10.1016/j.joule.2024.06.017
- S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377(6613), 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
- L. Zhang, Q. Kang, H. Shi, J. Hong, Y. Song et al., Surface defect passivation of Pb–Sn-alloyed perovskite film by 1, 3-propanediammonium iodide toward high-performance photovoltaic devices. Solar RRL 5(8), 2100299 (2021). https://doi.org/10.1002/solr.202100299
- V.M. Le Corre, E.A. Duijnstee, O. El Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6(3), 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
- E.A. Duijnstee, J.M. Ball, V.M. Le Corre, L.J.A. Koster, H.J. Snaith et al., Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5(2), 376–384 (2020). https://doi.org/10.1021/acsenergylett.9b02720
References
J. Liu, Y. He, L. Ding, H. Zhang et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623(7988), 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
Y. Yang, H. Chen, C. Liu, J. Xu, C. Huang et al., Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science 386(6724), 898–902 (2024). https://doi.org/10.1126/science.adr2091
L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15(1), 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588), 73–77 (2022). https://doi.org/10.1126/science.abm5784
X. Chang, R. Azmi, T. Yang, N. Wu, S.Y. Jeong et al., Solvent-dripping modulated 3D/2D heterostructures for high-performance perovskite solar cells. Nat. Commun. 16(1), 1042 (2025). https://doi.org/10.1038/s41467-025-56409-5
J. Li, C. Jin, R. Jiang, J. Su, T. Tian et al., Homogeneous coverage of the low-dimensional perovskite passivation layer for formamidinium–caesium perovskite solar modules. Nat. Energy 9(12), 1540–1550 (2024). https://doi.org/10.1038/s41560-024-01667-8
L. Luo, H. Zeng, Z. Wang, M. Li, S. You et al., Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8(3), 294–303 (2023). https://doi.org/10.1038/s41560-023-01205-y
S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
R. Azmi, D.S. Utomo, Y. Liu, S. Zhumagali, S. De Wolf, Dimensionality engineering of perovskites for stable heterojunction-based photovoltaics. Nat. Rev. Mater. 8, 47 (2025). https://doi.org/10.1038/s41578-025-00847-6
F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375(6576), 71–76 (2022). https://doi.org/10.1126/science.abj2637
G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15(9), 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
H. Wang, S. Su, Y. Chen, M. Ren, S. Wang et al., Impurity-healing interface engineering for efficient perovskite submodules. Nature 634(8036), 1091–1095 (2024). https://doi.org/10.1038/s41586-024-08073-w
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16(5), 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
T. Soto-Montero, S. Kralj, R. Azmi, M.A. Reus, J.S. Solomon et al., Single-source pulsed laser-deposited perovskite solar cells with enhanced performance via bulk and 2D passivation. Joule 8(12), 3412–3425 (2024). https://doi.org/10.1016/j.joule.2024.09.001
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628(8006), 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
M.-C. Shih, S. Tan, Y. Lu, T. Kodalle, D.-K. Lee et al., A 2D/3D heterostructure perovskite solar cell with a phase-pure and pristine 2D layer. Adv. Mater. 37(17), 2416672 (2025). https://doi.org/10.1002/adma.202416672
A.S. Subbiah, S. Mannar, V. Hnapovskyi, A.R. Pininti, B. Vishal et al., Efficient blade-coated perovskite/silicon tandems via interface engineering. Joule 9(1), 101767 (2025). https://doi.org/10.1016/j.joule.2024.09.014
D. He, P. Chen, J.A. Steele, Z. Wang, H. Xu et al., Homogeneous 2D/3D heterostructured tin halide perovskite photovoltaics. Nat. Nanotechnol. 20(6), 779–786 (2025). https://doi.org/10.1038/s41565-025-01905-4
X. Zheng, S. Ahmed, Y. Zhang, G. Xu, J. Wang et al., Differentiating the 2D passivation from amorphous passivation in perovskite solar cells. Nano-Micro Lett. 18(1), 62 (2025). https://doi.org/10.1007/s40820-025-01913-y
J. Zhang, J. Wu, S. Langner, B. Zhao, Z. Xie et al., Exploring the steric hindrance of alkylammonium cations in the structural reconfiguration of quasi-2D perovskite materials using a high-throughput experimental platform. Adv. Funct. Mater. 32(43), 2207101 (2022). https://doi.org/10.1002/adfm.202207101
P. Liu, X. Li, T. Cai, W. Xing, N. Yang et al., Molecular structure tailoring of organic spacers for high-performance ruddlesden-popper perovskite solar cells. Nano-Micro Lett. 17(1), 35 (2024). https://doi.org/10.1007/s40820-024-01500-7
Y. Gao, X. Dong, Y. Liu, Recent progress of layered perovskite solar cells incorporating aromatic spacers. Nano-Micro Lett. 15(1), 169 (2023). https://doi.org/10.1007/s40820-023-01141-2
Z. Liu, R. Lin, M. Wei, M. Yin, P. Wu et al., All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24(2), 252–259 (2025). https://doi.org/10.1038/s41563-024-02073-x
C. Ma, F.T. Eickemeyer, S.-H. Lee, D.-H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379(6628), 173–178 (2023). https://doi.org/10.1126/science.adf3349
C. Ma, M. Grätzel, N.-G. Park, Facet engineering for stable, efficient perovskite solar cells. ACS Energy Lett. 7(9), 3120–3128 (2022). https://doi.org/10.1021/acsenergylett.2c01623
L. Martínez-Sarti, S.H. Jo, Y.-H. Kim, M. Sessolo, F. Palazon et al., Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale 11(27), 12793–12797 (2019). https://doi.org/10.1039/c9nr04520a
X. Zheng, A.Y. Alsalloum, Y. Hou, E.H. Sargent, O.M. Bakr, All-perovskite tandem solar cells: a roadmap to uniting high efficiency with high stability. Acc. Mater. Res. 1(1), 63–76 (2020). https://doi.org/10.1021/accountsmr.0c00017
G. Dastgeer, M.W. Zulfiqar, S. Nisar, R. Zulfiqar, M. Imran et al., Emerging role of 2D materials in photovoltaics: efficiency enhancement and future perspectives. Nano-Micro Lett. 18(1), 32 (2025). https://doi.org/10.1007/s40820-025-01869-z
X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
C. Ma, M.-C. Kang, S.-H. Lee, S.J. Kwon, H.-W. Cha et al., Photovoltaically top-performing perovskite crystal facets. Joule 6(11), 2626–2643 (2022). https://doi.org/10.1016/j.joule.2022.09.012
H.-W. Zhang, Y.-G. Bi, Y.-F. Wang, D.-M. Shan, C.-M. Jin et al., Dual-interface passivation to improve the efficiency and stability of inverted flexible perovskite solar cells by in situ constructing 2D/3D/2D perovskite double heterojunctions. J. Power. Sources 629, 235973 (2025). https://doi.org/10.1016/j.jpowsour.2024.235973
X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
Y. Zhang, Y. Wang, X. Yang, L. Zhao, R. Su et al., Mechanochemistry advances high-performance perovskite solar cells. Adv. Mater. 34(6), e2107420 (2022). https://doi.org/10.1002/adma.202107420
S.S. Sangale, S.-N. Kwon, P. Patil, H.-J. Lee, S.-I. Na, Locally supersaturated inks for a slot-die process to enable highly efficient and robust perovskite solar cells. Adv. Energy Mater. 13(33), 2300537 (2023). https://doi.org/10.1002/aenm.202300537
M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
E. Ugur, E. Aydin, M. De Bastiani, G.T. Harrison, B.K. Yildirim et al., Front-contact passivation through 2D/3D perovskite heterojunctions enables efficient bifacial perovskite/silicon tandem solar cells. Matter 6(9), 2919–2934 (2023). https://doi.org/10.1016/j.matt.2023.05.028
Y. Zou, Y. Cui, H.-Y. Wang, Q. Cai, C. Mu et al., Highly efficient and stable 2D–3D perovskite solar cells fabricated by interfacial modification. Nanotechnology 30(27), 275202 (2019). https://doi.org/10.1088/1361-6528/ab10f3
M. Wang, Z. Shi, C. Fei, Z.J.D. Deng, G. Yang et al., Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8(11), 1229–1239 (2023). https://doi.org/10.1038/s41560-023-01362-0
H. Li, C. Zhang, C. Gong, D. Zhang, H. Zhang et al., 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8(9), 946–955 (2023). https://doi.org/10.1038/s41560-023-01295-8
C. Ma, M.-C. Kang, S.-H. Lee, Y. Zhang, D.-H. Kang et al., Facet-dependent passivation for efficient perovskite solar cells. J. Am. Chem. Soc. 145(44), 24349–24357 (2023). https://doi.org/10.1021/jacs.3c09327
J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D Ruddlesden–Popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 15(1), 296–310 (2022). https://doi.org/10.1039/d1ee01695d
P. Gao, A.R. Bin Mohd Yusoff, M.K. Nazeeruddin, Dimensionality engineering of hybrid halide perovskite light absorbers. Nat. Commun. 9(1), 5028 (2018). https://doi.org/10.1038/s41467-018-07382-9
G. Walters, M. Wei, O. Voznyy, R. Quintero-Bermudez, A. Kiani et al., The quantum-confined Stark effect in layered hybrid perovskites mediated by orientational polarizability of confined dipoles. Nat. Commun. 9, 4214 (2018). https://doi.org/10.1038/s41467-018-06746-5
Y. Lin, J. Tang, H. Yan, J. Lin, W. Wang et al., Ultra-large dipole moment organic cations derived 3D/2D p–n heterojunction for high-efficiency carbon-based perovskite solar cells. Energy Environ. Sci. 17(13), 4692–4702 (2024). https://doi.org/10.1039/d4ee00568f
K.M. Yeom, C. Cho, E.H. Jung, G. Kim, C.S. Moon et al., Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices. Nat. Commun. 15(1), 4547 (2024). https://doi.org/10.1038/s41467-024-48887-w
L.V. Torres Merino, C.E. Petoukhoff, O. Matiash, A.S. Subbiah, C.V. Franco et al., Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells. Joule 8(9), 2585–2606 (2024). https://doi.org/10.1016/j.joule.2024.06.017
S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377(6613), 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
L. Zhang, Q. Kang, H. Shi, J. Hong, Y. Song et al., Surface defect passivation of Pb–Sn-alloyed perovskite film by 1, 3-propanediammonium iodide toward high-performance photovoltaic devices. Solar RRL 5(8), 2100299 (2021). https://doi.org/10.1002/solr.202100299
V.M. Le Corre, E.A. Duijnstee, O. El Tambouli, J.M. Ball, H.J. Snaith et al., Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6(3), 1087–1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
E.A. Duijnstee, J.M. Ball, V.M. Le Corre, L.J.A. Koster, H.J. Snaith et al., Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5(2), 376–384 (2020). https://doi.org/10.1021/acsenergylett.9b02720