Metal–Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
Corresponding Author: Xuliang Nie
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 42
Abstract
Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
Highlights:
1 Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity.
2 By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained.
3 FeCo/Fe3O4/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, A.X. Liang et al., Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
- M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Electromagnetic functions of patterned 2D materials for micro–nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7, 1900689 (2019). https://doi.org/10.1002/adom.201900689
- X. Sun, Y. Li, Y. Huang, Y. Cheng, S. Wang et al., Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 32, 2107508 (2022). https://doi.org/10.1002/adfm.202107508
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
- R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm.202204591
- F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
- L. Yang, Y. Wang, Z. Lu, R. Cheng, N. Wang et al., Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 205, 411–421 (2023). https://doi.org/10.1016/j.carbon.2023.01.057
- L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202213258
- S.P. Yeap, J. Lim, B.S. Ooi, A.L. Ahmad, Agglomeration, colloidal stability, and magnetic separation of magnetic nanops: collective influences on environmental engineering applications. J. Nanopart. Res. 19, 1–15 (2017). https://doi.org/10.1007/s11051-017-4065-6
- Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@ cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
- K. Kanamori, M. Aizawa, K. Nakanishi, T. Hanada, New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 1589–1593 (2007). https://doi.org/10.1002/adma.200602457
- H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
- K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15, 88 (2023). https://doi.org/10.1007/s40820-023-01062-0
- A.K. Chaudhari, I. Han, J.C. Tan, Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) nanops. Adv. Mater. 27, 4438–4446 (2015). https://doi.org/10.1002/adma.201501448
- J. Wang, M. Zhou, Z. Xie, X. Hao, S. Tang et al., Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. J. Colloid Interface Sci. 612, 146–155 (2022). https://doi.org/10.1016/j.jcis.2021.12.162
- F. Wang, W. Gu, J. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 15, 3720–3728 (2022). https://doi.org/10.1007/s12274-021-3955-1
- Z. Yang, W. You, X. Xiong, R. Zhang, Z. Wu et al., Morphology-evolved succulent-like FeCo microarchitectures with magnetic configuration regulation for enhanced microwave absorption. ACS Appl. Mater. Interfaces 14, 32369–32378 (2022). https://doi.org/10.1021/acsami.2c06767
- D. Zhi, T. Li, Z. Qi, J. Li, Y. Tian et al., Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 433, 134496 (2022). https://doi.org/10.1016/j.cej.2022.134496
- X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022). https://doi.org/10.1016/j.carbon.2021.11.045
- R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV-Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
- Z. Sun, Z. Yan, A. Li, K. Yue, L. Zhao et al., Dual heteroatoms co-doping strategy of graphene-based dielectric loss electromagnetic absorbent. Appl. Surf. Sci. 564, 150380 (2021). https://doi.org/10.1016/j.apsusc.2021.150380
- L. Guo, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai, L. Cui, Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment. ACS Sustain. Chem. Eng. 7, 9237–9248 (2019). https://doi.org/10.1021/acssuschemeng.9b0006716
- X. Gong, Y. Wang, Z. Tian, X. Zheng, L. Chen, Controlled production of spruce cellulose gels using an environmentally “green” system. Cellulose 21, 1667–1678 (2014). https://doi.org/10.1007/s10570-014-0200-z
- X. He, H. Peng, Z. Xiong, X. Nie, D. Wang et al., A sustainable and low-cost route to prepare magnetic p-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes. Carbon 198, 195–206 (2022). https://doi.org/10.1016/j.carbon.2022.07.018
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
- Z. Shen, C. Liu, H. Yang, Y. Xie, Q. Zeng et al., Fabrication of hollow cube dual-semiconductor Ln2O3/MnO/C nanocomposites with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 13, 28689–28702 (2021). https://doi.org/10.1021/acsami.1c06446
- F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., “Win–Win” Strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small 19, 2303597 (2023). https://doi.org/10.1002/smll.202303597
- J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
- F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
- X. Zhou, Z. Jia, A. Feng, S. Qu, X. Wang et al., Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 575, 130–139 (2020). https://doi.org/10.1016/j.jcis.2020.04.099
- H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15, 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
- R. Peymanfar, S. Ghorbanian-Gezaforodi, Preparation of graphite-like carbon nitride (g-C3N4)/NiCo2S4 nanocomposite toward salient microwave characteristics and evaluation of medium influence on its microwave features. Nanotechnology 31, 495202 (2020). https://doi.org/10.1088/1361-6528/abb2c0
- R. Peymanfar, S. Ghorbanian-Gezaforodi, E. Selseleh-Zakerin, A. Ahmadi, A. Ghaffari, Tailoring La0.8Sr0.2MnO3/La/Sr nanocomposite using a novel complementary method as well as dissecting its microwave, shielding, optical, and magnetic characteristics. Ceram. Int. 46, 20896–20904 (2020). https://doi.org/10.1016/j.ceramint.2020.05.139
- X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu et al., Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Adv. Sci. 6, 1801898 (2019). https://doi.org/10.1002/advs.201801898
- M. Kuriakose, S. Longuemart, M. Depriester, S. Delenclos, A.H. Sahraoui, Maxwell–Wagner–Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Phys. Rev. E 89, 022511 (2014). https://doi.org/10.1103/PhysRevE.89.022511
- Z.J. Li, Z.L. Hou, W.L. Song, X.D. Liu, W.Q. Cao et al., Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale 8, 10415–10424 (2016). https://doi.org/10.1039/c6nr00223d
- B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
- B. Li, Z. Ma, X. Zhang, J. Xu, Y. Chen et al., NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption. Small 19, 2207197 (2023). https://doi.org/10.1002/smll.202207197
- P. Yin, G. Wu, Y. Tang, S. Liu, Y. Zhang et al., Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe, Ni) for broadband microwave absorption. Chem. Eng. J. 446, 136975 (2022). https://doi.org/10.1016/j.cej.2022.136975
- R. Peymanfar, H. Dogari, E. Selseleh-Zakerin, M.H. Hedayatzadeh, S. Daneshvar et al., Recent advances in microwave-absorbing materials fabricated using organic conductive polymers. Front. Mater. 10, 1133287 (2023). https://doi.org/10.3389/fmats.2023.1133287
- H. Dogari, R. Peymanfar, H. Ghafuri, Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure. RSC Adv. 13, 22205–22215 (2023). https://doi.org/10.1039/d3ra03927g
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- Q. Huang, Y. Zhao, Y. Wu, M. Zhou, S. Tan et al., A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 446, 137279 (2022). https://doi.org/10.1016/j.cej.2022.137279
- Y. Wang, M. Zhang, X. Deng, Z. Li, Z. Chen et al., Reduced graphene oxide aerogel decorated with Mo2C nanops toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption. Int. J. Min. Met. Mater. 30, 536–547 (2023). https://doi.org/10.1007/s12613-022-2570-9
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Phase engineering reinforced multiple loss network in apple tree–like liquid metal/Ni–Ni3P/N–doped carbon fiber composites for high–performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
- D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9, 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h
References
Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, A.X. Liang et al., Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
M. Zhang, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Electromagnetic functions of patterned 2D materials for micro–nano devices covering GHz, THz, and optical frequency. Adv. Opt. Mater. 7, 1900689 (2019). https://doi.org/10.1002/adom.201900689
X. Sun, Y. Li, Y. Huang, Y. Cheng, S. Wang et al., Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 32, 2107508 (2022). https://doi.org/10.1002/adfm.202107508
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022). https://doi.org/10.1002/adfm.202108194
G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm.202204591
F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
L. Yang, Y. Wang, Z. Lu, R. Cheng, N. Wang et al., Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 205, 411–421 (2023). https://doi.org/10.1016/j.carbon.2023.01.057
L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202213258
S.P. Yeap, J. Lim, B.S. Ooi, A.L. Ahmad, Agglomeration, colloidal stability, and magnetic separation of magnetic nanops: collective influences on environmental engineering applications. J. Nanopart. Res. 19, 1–15 (2017). https://doi.org/10.1007/s11051-017-4065-6
Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@ cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
K. Kanamori, M. Aizawa, K. Nakanishi, T. Hanada, New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 1589–1593 (2007). https://doi.org/10.1002/adma.200602457
H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
K. Qian, J. Zhou, M. Miao, H. Wu, S. Thaiboonrod et al., Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 15, 88 (2023). https://doi.org/10.1007/s40820-023-01062-0
A.K. Chaudhari, I. Han, J.C. Tan, Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) nanops. Adv. Mater. 27, 4438–4446 (2015). https://doi.org/10.1002/adma.201501448
J. Wang, M. Zhou, Z. Xie, X. Hao, S. Tang et al., Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section. J. Colloid Interface Sci. 612, 146–155 (2022). https://doi.org/10.1016/j.jcis.2021.12.162
F. Wang, W. Gu, J. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 15, 3720–3728 (2022). https://doi.org/10.1007/s12274-021-3955-1
Z. Yang, W. You, X. Xiong, R. Zhang, Z. Wu et al., Morphology-evolved succulent-like FeCo microarchitectures with magnetic configuration regulation for enhanced microwave absorption. ACS Appl. Mater. Interfaces 14, 32369–32378 (2022). https://doi.org/10.1021/acsami.2c06767
D. Zhi, T. Li, Z. Qi, J. Li, Y. Tian et al., Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 433, 134496 (2022). https://doi.org/10.1016/j.cej.2022.134496
X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022). https://doi.org/10.1016/j.carbon.2021.11.045
R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV-Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
Z. Sun, Z. Yan, A. Li, K. Yue, L. Zhao et al., Dual heteroatoms co-doping strategy of graphene-based dielectric loss electromagnetic absorbent. Appl. Surf. Sci. 564, 150380 (2021). https://doi.org/10.1016/j.apsusc.2021.150380
L. Guo, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai, L. Cui, Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment. ACS Sustain. Chem. Eng. 7, 9237–9248 (2019). https://doi.org/10.1021/acssuschemeng.9b0006716
X. Gong, Y. Wang, Z. Tian, X. Zheng, L. Chen, Controlled production of spruce cellulose gels using an environmentally “green” system. Cellulose 21, 1667–1678 (2014). https://doi.org/10.1007/s10570-014-0200-z
X. He, H. Peng, Z. Xiong, X. Nie, D. Wang et al., A sustainable and low-cost route to prepare magnetic p-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes. Carbon 198, 195–206 (2022). https://doi.org/10.1016/j.carbon.2022.07.018
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812
Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
Z. Shen, C. Liu, H. Yang, Y. Xie, Q. Zeng et al., Fabrication of hollow cube dual-semiconductor Ln2O3/MnO/C nanocomposites with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 13, 28689–28702 (2021). https://doi.org/10.1021/acsami.1c06446
F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., “Win–Win” Strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small 19, 2303597 (2023). https://doi.org/10.1002/smll.202303597
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
X. Zhou, Z. Jia, A. Feng, S. Qu, X. Wang et al., Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 575, 130–139 (2020). https://doi.org/10.1016/j.jcis.2020.04.099
H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6, 11009–11017 (2012). https://doi.org/10.1021/nn304630h
J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15, 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
R. Peymanfar, S. Ghorbanian-Gezaforodi, Preparation of graphite-like carbon nitride (g-C3N4)/NiCo2S4 nanocomposite toward salient microwave characteristics and evaluation of medium influence on its microwave features. Nanotechnology 31, 495202 (2020). https://doi.org/10.1088/1361-6528/abb2c0
R. Peymanfar, S. Ghorbanian-Gezaforodi, E. Selseleh-Zakerin, A. Ahmadi, A. Ghaffari, Tailoring La0.8Sr0.2MnO3/La/Sr nanocomposite using a novel complementary method as well as dissecting its microwave, shielding, optical, and magnetic characteristics. Ceram. Int. 46, 20896–20904 (2020). https://doi.org/10.1016/j.ceramint.2020.05.139
X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu et al., Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Adv. Sci. 6, 1801898 (2019). https://doi.org/10.1002/advs.201801898
M. Kuriakose, S. Longuemart, M. Depriester, S. Delenclos, A.H. Sahraoui, Maxwell–Wagner–Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Phys. Rev. E 89, 022511 (2014). https://doi.org/10.1103/PhysRevE.89.022511
Z.J. Li, Z.L. Hou, W.L. Song, X.D. Liu, W.Q. Cao et al., Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale 8, 10415–10424 (2016). https://doi.org/10.1039/c6nr00223d
B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
B. Li, Z. Ma, X. Zhang, J. Xu, Y. Chen et al., NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption. Small 19, 2207197 (2023). https://doi.org/10.1002/smll.202207197
P. Yin, G. Wu, Y. Tang, S. Liu, Y. Zhang et al., Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe, Ni) for broadband microwave absorption. Chem. Eng. J. 446, 136975 (2022). https://doi.org/10.1016/j.cej.2022.136975
R. Peymanfar, H. Dogari, E. Selseleh-Zakerin, M.H. Hedayatzadeh, S. Daneshvar et al., Recent advances in microwave-absorbing materials fabricated using organic conductive polymers. Front. Mater. 10, 1133287 (2023). https://doi.org/10.3389/fmats.2023.1133287
H. Dogari, R. Peymanfar, H. Ghafuri, Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure. RSC Adv. 13, 22205–22215 (2023). https://doi.org/10.1039/d3ra03927g
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
Q. Huang, Y. Zhao, Y. Wu, M. Zhou, S. Tan et al., A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 446, 137279 (2022). https://doi.org/10.1016/j.cej.2022.137279
Y. Wang, M. Zhang, X. Deng, Z. Li, Z. Chen et al., Reduced graphene oxide aerogel decorated with Mo2C nanops toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption. Int. J. Min. Met. Mater. 30, 536–547 (2023). https://doi.org/10.1007/s12613-022-2570-9
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
F. Pan, L. Cai, Y. Shi, Y. Dong, X. Zhu et al., Phase engineering reinforced multiple loss network in apple tree–like liquid metal/Ni–Ni3P/N–doped carbon fiber composites for high–performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9, 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h