Metallic WO2-Promoted CoWO4/WO2 Heterojunction with Intercalation-Mediated Catalysis for Lithium–Sulfur Batteries
Corresponding Author: Tao Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 7
Abstract
Lithium–sulfur (Li–S) batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect. However, the rational design of catalysts remains challenging due to the lack of a systematic strategy that rationally optimizes electronic structures and mesoscale transport properties. In this work, we propose an autogenously transformed CoWO4/WO2 heterojunction catalyst, integrating a strong polysulfide-adsorbing intercalation catalyst with a metallic-phase promoter for enhanced activity. CoWO4 effectively captures polysulfides, while the CoWO4/WO2 interface facilitates their S–S bond activation on heterogenous catalytic sites. Benefiting from its directional intercalation channels, CoWO4 not only serves as a dynamic Li-ion reservoir but also provides continuous and direct pathways for rapid Li-ion transport. Such synergistic interactions across the heterojunction interfaces enhance the catalytic activity of the composite. As a result, the CoWO4/WO2 heterostructure demonstrates significantly enhanced catalytic performance, delivering a high capacity of 1262 mAh g−1 at 0.1 C. Furthermore, its rate capability and high sulfur loading performance are markedly improved, surpassing the limitations of its single-component counterparts. This study provides new insights into the catalytic mechanisms governing Li–S chemistry and offers a promising strategy for the rational design of high-performance Li–S battery catalysts.
Highlights:
1 The CoWO4/WO2 heterojunction was successfully constructed through hydrothermal synthesis of precursors followed by autogenous transformation induced by hydrogen reduction.
2 The synergistic effect of CoWO4 and WO2 promotes the catalytic conversion of polysulfides and suppresses the shuttle effect.
3 The CoWO4/WO2 heterojunction demonstrates significantly enhanced catalytic performance, delivering a high capacity of 1262 mAh g−1 at 0.1 C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv. Mater. 33(29), e2003666 (2021). https://doi.org/10.1002/adma.202003666
- G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- T. Li, X. Bai, U. Gulzar, Y.-J. Bai, C. Capiglia et al., A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 29(32), 1901730 (2019). https://doi.org/10.1002/adfm.201901730
- T. Wang, J. He, X.-B. Cheng, J. Zhu, B. Lu et al., Strategies toward high-loading lithium–sulfur batteries. ACS Energy Lett. 8(1), 116–150 (2023). https://doi.org/10.1021/acsenergylett.2c02179
- M. Wang, Z. Bai, T. Yang, C. Nie, X. Xu et al., Advances in high sulfur loading cathodes for practical lithium-sulfur batteries. Adv. Energy Mater. 12(39), 2201585 (2022). https://doi.org/10.1002/aenm.202201585
- P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11(7), 2002893 (2021). https://doi.org/10.1002/aenm.202002893
- Y. Hu, W. Chen, T. Lei, Y. Jiao, J. Huang et al., Strategies toward high-loading lithium–sulfur battery. Adv. Energy Mater. 10(17), 2000082 (2020). https://doi.org/10.1002/aenm.202000082
- C. Geng, X. Jiang, S. Hong, L. Wang, Y. Zhao et al., Unveiling the role of electric double-layer in sulfur catalysis for batteries. Adv. Mater. 36(38), 2407741 (2024). https://doi.org/10.1002/adma.202407741
- Z.-C. Li, T.-Y. Li, Y.-R. Deng, W.-H. Tang, X.-D. Wang et al., 3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries. Rare Met. 41(8), 2834–2843 (2022). https://doi.org/10.1007/s12598-022-02009-x
- X.-Y. Rao, S.-F. Xiang, J. Zhou, Z. Zhang, X.-Y. Xu et al., Recent progress and strategies of cathodes toward polysulfides shuttle restriction for lithium-sulfur batteries. Rare Met. 43, 4132–4161 (2024). https://doi.org/10.1007/s12598-024-02708-7
- H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
- R. Li, D. Rao, J. Zhou, G. Wu, G. Wang et al., Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 12(1), 3102 (2021). https://doi.org/10.1038/s41467-021-23349-9
- H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium–sulfur batteries. Adv. Energy Mater. 8(30), 1801868 (2018). https://doi.org/10.1002/aenm.201801868
- S. Wang, Y. Wang, Y. Song, X. Jia, J. Yang et al., Immobilizing polysulfide via multiple active sites in W18O49 for Li-S batteries by oxygen vacancy engineering. Energy Storage Mater. 43, 422–429 (2021). https://doi.org/10.1016/j.ensm.2021.09.020
- Y. Pan, X. Cheng, M. Gao, Y. Fu, J. Feng et al., Dual-functional multichannel carbon framework embedded with CoS2 nanops: promoting the phase transformation for high-loading Li-S batteries. ACS Appl. Mater. Interfaces 12(29), 32726–32735 (2020). https://doi.org/10.1021/acsami.0c07875
- X. Liao, Z. Li, Q. He, L. Xia, Y. Li et al., Three-dimensional porous nitrogen-doped carbon nanosheet with embedded NixCo3-xS4 nanocrystals for advanced lithium-sulfur batteries. ACS Appl. Mater. Interf. 12(8), 9181–9189 (2020). https://doi.org/10.1021/acsami.9b19506
- S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao et al., Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries. ACS Energy Lett. 4(3), 755–762 (2019). https://doi.org/10.1021/acsenergylett.9b00076
- L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, In-situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries. ACS Energy Lett. 5(4), 1177–1185 (2020). https://doi.org/10.1021/acsenergylett.0c00292
- D. Kim, J. Pandey, J. Jeong, W. Cho, S. Lee et al., Phase engineering of 2D materials. Chem. Rev. 123(19), 11230–11268 (2023). https://doi.org/10.1021/acs.chemrev.3c00132
- M. Yousaf, U. Naseer, I. Ali, Y. Li, W. Aftab et al., Role of binary metal chalcogenides in extending the limits of energy storage systems: Challenges and possible solutions. Sci. China Mater. 65(3), 559–592 (2022). https://doi.org/10.1007/s40843-021-1895-2
- Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), e2103456 (2022). https://doi.org/10.1002/advs.202103456
- W. Yao, J. Xu, Y. Cao, Y. Meng, Z. Wu et al., Dynamic intercalation-conversion site supported ultrathin 2D mesoporous SnO2/SnSe2 hybrid as bifunctional polysulfide immobilizer and lithium regulator for lithium-sulfur chemistry. ACS Nano 16(7), 10783–10797 (2022). https://doi.org/10.1021/acsnano.2c02810
- H. Cheng, Z. Shen, W. Liu, M. Luo, F. Huo et al., Vanadium intercalation into niobium disulfide to enhance the catalytic activity for lithium-sulfur batteries. ACS Nano 17(15), 14695–14705 (2023). https://doi.org/10.1021/acsnano.3c02634
- J. Li, G. Li, R. Wang, Q. He, W. Liu et al., Boron-doped dinickel phosphide to enhance polysulfide conversion and suppress shuttling in lithium-sulfur batteries. ACS Nano 18(27), 17774–17785 (2024). https://doi.org/10.1021/acsnano.4c03315
- R. Xiao, T. Yu, S. Yang, X. Zhang, T. Hu et al., Non-carbon-dominated catalyst architecture enables double-high-energy-density lithium–sulfur batteries. Adv. Funct. Mater. 34(3), 2308210 (2024). https://doi.org/10.1002/adfm.202308210
- A.W. Burns, K.A. Layman, D.H. Bale, M.E. Bussell, Understanding the relationship between composition and hydrodesulfurization properties for cobalt phosphide catalysts. Appl. Catal. A 343, 68–76 (2008). https://doi.org/10.1016/j.apcata.2008.03.022
- X. Zhang, Z. Shen, Y. Wen, Q. He, J. Yao et al., CrP nanocatalyst within porous MOF architecture to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Appl. Mater. Interf. 15(17), 21040–21048 (2023). https://doi.org/10.1021/acsami.3c01427
- Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong et al., Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30(3), 1906661 (2020). https://doi.org/10.1002/adfm.201906661
- W. Sun, L. Xu, Z. Song, H. Lin, Z. Jin et al., Coordination engineering based on graphitic carbon nitrides for long-life and high-capacity lithium-sulfur batteries. Adv. Funct. Mater. 34(14), 2313112 (2024). https://doi.org/10.1002/adfm.202313112
- L. Ma, Y. Wang, Z. Wang, J. Wang, Y. Cheng et al., Wide-temperature operation of lithium-sulfur batteries enabled by multi-branched vanadium nitride electrocatalyst. ACS Nano 17(12), 11527–11536 (2023). https://doi.org/10.1021/acsnano.3c01469
- Z. Shen, Z. Zhang, M. Li, Y. Yuan, Y. Zhao et al., Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14(6), 6673–6682 (2020). https://doi.org/10.1021/acsnano.9b09371
- Y. Li, Y. Deng, J.-L. Yang, W. Tang, B. Ge et al., Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium–sulfur battery. Adv. Funct. Mater. 33(44), 2302267 (2023). https://doi.org/10.1002/adfm.202302267
- C. Huang, J. Yu, C. Li, Z. Cui, C. Zhang et al., Combined defect and heterojunction engineering in ZnTe/CoTe2@NC sulfur hosts toward robust lithium–sulfur batteries. Adv. Funct. Mater. 33(46), 2305624 (2023). https://doi.org/10.1002/adfm.202305624
- Y. Wen, Z. Shen, J. Hui, H. Zhang, Q. Zhu, Co/CoSe junctions enable efficient and durable electrocatalytic conversion of polysulfides for high-performance Li–S batteries. Adv. Energy Mater. 13(20), 2204345 (2023). https://doi.org/10.1002/aenm.202204345
- X. Liang, D.-Q. Zhao, Q.-Q. Huang, S. Liang, L.-L. Wang et al., Super P and MoO2/MoS2 Co-doped gradient nanofiber membrane as multi-functional separator for lithium–sulfur batteries. Rare Met. 43(9), 4263–4273 (2024). https://doi.org/10.1007/s12598-024-02732-7
- Y. Deng, W. Tang, Y. Zhu, J. Ma, M. Zhou et al., Catalytic VS2–VO2 heterostructure that enables a self-supporting Li2S cathode for superior lithium–sulfur batteries. Small Meth. 7(6), 2300186 (2023). https://doi.org/10.1002/smtd.202300186
- Y. Deng, J.-L. Yang, Z. Qiu, W. Tang, Y. Li et al., NiS/NiCo2O4 cooperative interfaces enable fast sulfur redox kinetics for lithium–sulfur battery. Small Meth. 8(8), 2301316 (2024). https://doi.org/10.1002/smtd.202301316
- R. Chu, T.T. Nguyen, Y. Bai, N.H. Kim, J.H. Lee, Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv. Energy Mater. 12(9), 2102805 (2022). https://doi.org/10.1002/aenm.202102805
- T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
- W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4(5), 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
- L. Wang, Z.-Y. Wang, J.-F. Wu, G.-R. Li, S. Liu et al., To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithium−sulfur battery. Nano Energy 77, 105173 (2020). https://doi.org/10.1016/j.nanoen.2020.105173
- X.J. He, L.Y. Cao, X.G. Kong, J.F. Huang, J.P. Wu, Preparation of Co4W6O21(OH)2·4H2O via microwave hydrothermal method and its reaction process. Mater. Sci. Forum 809–810, 288–293 (2014). https://doi.org/10.4028/www.scientific.net/msf.809-810.288
- Y.-K. Li, W.-T. Lu, Y.-X. Du, R. Liu, Y.-T. Yue et al., Co3W intermetallic compound as an efficient hydrogen evolution electrocatalyst for water splitting and electrocoagulation in non-acidic media. Chem. Eng. J. 438, 135517 (2022). https://doi.org/10.1016/j.cej.2022.135517
- R. Ram, L. Xia, H. Benzidi, A. Guha, V. Golovanova et al., Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 384(6702), 1373–1380 (2024). https://doi.org/10.1126/science.adk9849
- G. Meng, H. Yao, H. Tian, F. Kong, X. Cui et al., An electrochemically reconstructed WC/WO2–WO3 heterostructure as a highly efficient hydrogen oxidation electrocatalyst. J. Mater. Chem. A 10(2), 622–631 (2022). https://doi.org/10.1039/D1TA08872F
- H. Zhang, N. Li, S. Gao, A. Chen, Q. Qian et al., Quenching-induced atom-stepped bimetallic sulfide heterointerface catalysts for industrial hydrogen generation. eScience 5(2), 100311 (2025). https://doi.org/10.1016/j.esci.2024.100311
- S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj, O.Y. Khyzhun, Electronic structure of FeWO4 and CoWO4 tungstates: first-principles FP-LAPW calculations and X-ray spectroscopy studies. J. Alloys Compd. 496(1–2), 61–68 (2010). https://doi.org/10.1016/j.jallcom.2010.02.107
- C. Lyu, L. Zhang, X. Zhang, H. Zhang, H. Xie et al., Controlled synthesis of sub-millimeter nonlayered WO2 nanoplates via a WSe2-assisted method. Adv. Mater. 35(12), 2207895 (2023). https://doi.org/10.1002/adma.202207895
- J. Liu, X. Xuan, Y. Yu, Q. Li, W. Wang et al., Regulating the local charge distribution in NiCo2O4@CoWO4 anode materials for hybrid asymmetric supercapacitors. Electrochim. Acta 510, 145381 (2025). https://doi.org/10.1016/j.electacta.2024.145381
- Z. Yang, Z. Li, C. Yang, L. Meng, W. Guo et al., Synthesis of closely-contacted Cu2O-CoWO4 nanosheet composites for cuproptosis therapy to tumors with sonodynamic and photothermal assistance. Adv. Sci. 12(2), 2410621 (2025). https://doi.org/10.1002/advs.202410621
- N. Li, X. Gao, J. Su, Y. Gao, L. Ge, Metallic WO2- decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis. Chin. J. Catal. 47, 161–170 (2023). https://doi.org/10.1016/S1872-2067(22)64210-4
- L. Kong, L. Pan, H. Guo, Y. Qiu, W.A. Alshahrani et al., Constructing WS2/WO3-x heterostructured electrocatalyst enriched with oxygen vacancies for accelerated hydrogen evolution reaction. J. Colloid Interface Sci. 664, 178–185 (2024). https://doi.org/10.1016/j.jcis.2024.03.002
- A.Q.K. Nguyen, Y.-Y. Ahn, G. Shin, Y. Cho, J. Lim et al., Degradation of organic compounds through both radical and nonradical activation of peroxymonosulfate using CoWO4 catalysts. Appl. Catal. B Environ. 324, 122266 (2023). https://doi.org/10.1016/j.apcatb.2022.122266
- Y. Zuo, Y. Zhu, R. Wan, W. Su, Y. Fan et al., The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chem. Eng. J. 415, 129053 (2021). https://doi.org/10.1016/j.cej.2021.129053
- A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (John Wiley and Sons Ltd, New York, 1980)
- D. You, W. Yang, Y. Liang, C. Yang, Y. Yu et al., Regulation of Li2S deposition and dissolution to achieve an efficient bidirectional lithium–sulfur battery. Adv. Funct. Mater. 35(20), 2421900 (2025). https://doi.org/10.1002/adfm.202421900
- L. Liang, L. Niu, T. Wu, D. Zhou, Z. Xiao, Fluorine-free fabrication of MXene via photo-Fenton approach for advanced lithium-sulfur batteries. ACS Nano 16(5), 7971–7981 (2022). https://doi.org/10.1021/acsnano.2c00779
- W. Hou, P. Feng, X. Guo, Z. Wang, Z. Bai et al., Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries. Adv. Mater. 34(26), 2202222 (2022). https://doi.org/10.1002/adma.202202222
- J. Xu, H. Zhang, F. Yu, Y. Cao, M. Liao et al., Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem. Int. Ed. 61(47), e202211933 (2022). https://doi.org/10.1002/anie.202211933
- Q. Zeng, L. Xu, G. Li, Q. Zhang, S. Guo et al., Integrating sub-nano catalysts into metal-organic framework toward pore-confined polysulfides conversion in lithium-sulfur batteries. Adv. Funct. Mater. 33(43), 2304619 (2023). https://doi.org/10.1002/adfm.202304619
- G. Zeng, Y. Liu, D. Chen, C. Zhen, Y. Han et al., Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries. Adv. Energy Mater. 11(44), 2102058 (2021). https://doi.org/10.1002/aenm.202102058
- W. Hua, H. Li, C. Pei, J. Xia, Y. Sun et al., Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 33(38), e2101006 (2021). https://doi.org/10.1002/adma.202101006
- J. Xu, W. Tang, C. Yang, I. Manke, N. Chen et al., A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li–S chemistry. ACS Energy Lett. 6(9), 3053–3062 (2021). https://doi.org/10.1021/acsenergylett.1c00943
References
Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv. Mater. 33(29), e2003666 (2021). https://doi.org/10.1002/adma.202003666
G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
T. Li, X. Bai, U. Gulzar, Y.-J. Bai, C. Capiglia et al., A comprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater. 29(32), 1901730 (2019). https://doi.org/10.1002/adfm.201901730
T. Wang, J. He, X.-B. Cheng, J. Zhu, B. Lu et al., Strategies toward high-loading lithium–sulfur batteries. ACS Energy Lett. 8(1), 116–150 (2023). https://doi.org/10.1021/acsenergylett.2c02179
M. Wang, Z. Bai, T. Yang, C. Nie, X. Xu et al., Advances in high sulfur loading cathodes for practical lithium-sulfur batteries. Adv. Energy Mater. 12(39), 2201585 (2022). https://doi.org/10.1002/aenm.202201585
P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11(7), 2002893 (2021). https://doi.org/10.1002/aenm.202002893
Y. Hu, W. Chen, T. Lei, Y. Jiao, J. Huang et al., Strategies toward high-loading lithium–sulfur battery. Adv. Energy Mater. 10(17), 2000082 (2020). https://doi.org/10.1002/aenm.202000082
C. Geng, X. Jiang, S. Hong, L. Wang, Y. Zhao et al., Unveiling the role of electric double-layer in sulfur catalysis for batteries. Adv. Mater. 36(38), 2407741 (2024). https://doi.org/10.1002/adma.202407741
Z.-C. Li, T.-Y. Li, Y.-R. Deng, W.-H. Tang, X.-D. Wang et al., 3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries. Rare Met. 41(8), 2834–2843 (2022). https://doi.org/10.1007/s12598-022-02009-x
X.-Y. Rao, S.-F. Xiang, J. Zhou, Z. Zhang, X.-Y. Xu et al., Recent progress and strategies of cathodes toward polysulfides shuttle restriction for lithium-sulfur batteries. Rare Met. 43, 4132–4161 (2024). https://doi.org/10.1007/s12598-024-02708-7
H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
R. Li, D. Rao, J. Zhou, G. Wu, G. Wang et al., Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 12(1), 3102 (2021). https://doi.org/10.1038/s41467-021-23349-9
H. Lin, S. Zhang, T. Zhang, H. Ye, Q. Yao et al., Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium–sulfur batteries. Adv. Energy Mater. 8(30), 1801868 (2018). https://doi.org/10.1002/aenm.201801868
S. Wang, Y. Wang, Y. Song, X. Jia, J. Yang et al., Immobilizing polysulfide via multiple active sites in W18O49 for Li-S batteries by oxygen vacancy engineering. Energy Storage Mater. 43, 422–429 (2021). https://doi.org/10.1016/j.ensm.2021.09.020
Y. Pan, X. Cheng, M. Gao, Y. Fu, J. Feng et al., Dual-functional multichannel carbon framework embedded with CoS2 nanops: promoting the phase transformation for high-loading Li-S batteries. ACS Appl. Mater. Interfaces 12(29), 32726–32735 (2020). https://doi.org/10.1021/acsami.0c07875
X. Liao, Z. Li, Q. He, L. Xia, Y. Li et al., Three-dimensional porous nitrogen-doped carbon nanosheet with embedded NixCo3-xS4 nanocrystals for advanced lithium-sulfur batteries. ACS Appl. Mater. Interf. 12(8), 9181–9189 (2020). https://doi.org/10.1021/acsami.9b19506
S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao et al., Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries. ACS Energy Lett. 4(3), 755–762 (2019). https://doi.org/10.1021/acsenergylett.9b00076
L. Luo, J. Li, H. Yaghoobnejad Asl, A. Manthiram, In-situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries. ACS Energy Lett. 5(4), 1177–1185 (2020). https://doi.org/10.1021/acsenergylett.0c00292
D. Kim, J. Pandey, J. Jeong, W. Cho, S. Lee et al., Phase engineering of 2D materials. Chem. Rev. 123(19), 11230–11268 (2023). https://doi.org/10.1021/acs.chemrev.3c00132
M. Yousaf, U. Naseer, I. Ali, Y. Li, W. Aftab et al., Role of binary metal chalcogenides in extending the limits of energy storage systems: Challenges and possible solutions. Sci. China Mater. 65(3), 559–592 (2022). https://doi.org/10.1007/s40843-021-1895-2
Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), e2103456 (2022). https://doi.org/10.1002/advs.202103456
W. Yao, J. Xu, Y. Cao, Y. Meng, Z. Wu et al., Dynamic intercalation-conversion site supported ultrathin 2D mesoporous SnO2/SnSe2 hybrid as bifunctional polysulfide immobilizer and lithium regulator for lithium-sulfur chemistry. ACS Nano 16(7), 10783–10797 (2022). https://doi.org/10.1021/acsnano.2c02810
H. Cheng, Z. Shen, W. Liu, M. Luo, F. Huo et al., Vanadium intercalation into niobium disulfide to enhance the catalytic activity for lithium-sulfur batteries. ACS Nano 17(15), 14695–14705 (2023). https://doi.org/10.1021/acsnano.3c02634
J. Li, G. Li, R. Wang, Q. He, W. Liu et al., Boron-doped dinickel phosphide to enhance polysulfide conversion and suppress shuttling in lithium-sulfur batteries. ACS Nano 18(27), 17774–17785 (2024). https://doi.org/10.1021/acsnano.4c03315
R. Xiao, T. Yu, S. Yang, X. Zhang, T. Hu et al., Non-carbon-dominated catalyst architecture enables double-high-energy-density lithium–sulfur batteries. Adv. Funct. Mater. 34(3), 2308210 (2024). https://doi.org/10.1002/adfm.202308210
A.W. Burns, K.A. Layman, D.H. Bale, M.E. Bussell, Understanding the relationship between composition and hydrodesulfurization properties for cobalt phosphide catalysts. Appl. Catal. A 343, 68–76 (2008). https://doi.org/10.1016/j.apcata.2008.03.022
X. Zhang, Z. Shen, Y. Wen, Q. He, J. Yao et al., CrP nanocatalyst within porous MOF architecture to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Appl. Mater. Interf. 15(17), 21040–21048 (2023). https://doi.org/10.1021/acsami.3c01427
Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong et al., Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30(3), 1906661 (2020). https://doi.org/10.1002/adfm.201906661
W. Sun, L. Xu, Z. Song, H. Lin, Z. Jin et al., Coordination engineering based on graphitic carbon nitrides for long-life and high-capacity lithium-sulfur batteries. Adv. Funct. Mater. 34(14), 2313112 (2024). https://doi.org/10.1002/adfm.202313112
L. Ma, Y. Wang, Z. Wang, J. Wang, Y. Cheng et al., Wide-temperature operation of lithium-sulfur batteries enabled by multi-branched vanadium nitride electrocatalyst. ACS Nano 17(12), 11527–11536 (2023). https://doi.org/10.1021/acsnano.3c01469
Z. Shen, Z. Zhang, M. Li, Y. Yuan, Y. Zhao et al., Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 14(6), 6673–6682 (2020). https://doi.org/10.1021/acsnano.9b09371
Y. Li, Y. Deng, J.-L. Yang, W. Tang, B. Ge et al., Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium–sulfur battery. Adv. Funct. Mater. 33(44), 2302267 (2023). https://doi.org/10.1002/adfm.202302267
C. Huang, J. Yu, C. Li, Z. Cui, C. Zhang et al., Combined defect and heterojunction engineering in ZnTe/CoTe2@NC sulfur hosts toward robust lithium–sulfur batteries. Adv. Funct. Mater. 33(46), 2305624 (2023). https://doi.org/10.1002/adfm.202305624
Y. Wen, Z. Shen, J. Hui, H. Zhang, Q. Zhu, Co/CoSe junctions enable efficient and durable electrocatalytic conversion of polysulfides for high-performance Li–S batteries. Adv. Energy Mater. 13(20), 2204345 (2023). https://doi.org/10.1002/aenm.202204345
X. Liang, D.-Q. Zhao, Q.-Q. Huang, S. Liang, L.-L. Wang et al., Super P and MoO2/MoS2 Co-doped gradient nanofiber membrane as multi-functional separator for lithium–sulfur batteries. Rare Met. 43(9), 4263–4273 (2024). https://doi.org/10.1007/s12598-024-02732-7
Y. Deng, W. Tang, Y. Zhu, J. Ma, M. Zhou et al., Catalytic VS2–VO2 heterostructure that enables a self-supporting Li2S cathode for superior lithium–sulfur batteries. Small Meth. 7(6), 2300186 (2023). https://doi.org/10.1002/smtd.202300186
Y. Deng, J.-L. Yang, Z. Qiu, W. Tang, Y. Li et al., NiS/NiCo2O4 cooperative interfaces enable fast sulfur redox kinetics for lithium–sulfur battery. Small Meth. 8(8), 2301316 (2024). https://doi.org/10.1002/smtd.202301316
R. Chu, T.T. Nguyen, Y. Bai, N.H. Kim, J.H. Lee, Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv. Energy Mater. 12(9), 2102805 (2022). https://doi.org/10.1002/aenm.202102805
T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao et al., Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ. Sci. 10(7), 1694–1703 (2017). https://doi.org/10.1039/C7EE01430A
W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4(5), 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
L. Wang, Z.-Y. Wang, J.-F. Wu, G.-R. Li, S. Liu et al., To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithium−sulfur battery. Nano Energy 77, 105173 (2020). https://doi.org/10.1016/j.nanoen.2020.105173
X.J. He, L.Y. Cao, X.G. Kong, J.F. Huang, J.P. Wu, Preparation of Co4W6O21(OH)2·4H2O via microwave hydrothermal method and its reaction process. Mater. Sci. Forum 809–810, 288–293 (2014). https://doi.org/10.4028/www.scientific.net/msf.809-810.288
Y.-K. Li, W.-T. Lu, Y.-X. Du, R. Liu, Y.-T. Yue et al., Co3W intermetallic compound as an efficient hydrogen evolution electrocatalyst for water splitting and electrocoagulation in non-acidic media. Chem. Eng. J. 438, 135517 (2022). https://doi.org/10.1016/j.cej.2022.135517
R. Ram, L. Xia, H. Benzidi, A. Guha, V. Golovanova et al., Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis. Science 384(6702), 1373–1380 (2024). https://doi.org/10.1126/science.adk9849
G. Meng, H. Yao, H. Tian, F. Kong, X. Cui et al., An electrochemically reconstructed WC/WO2–WO3 heterostructure as a highly efficient hydrogen oxidation electrocatalyst. J. Mater. Chem. A 10(2), 622–631 (2022). https://doi.org/10.1039/D1TA08872F
H. Zhang, N. Li, S. Gao, A. Chen, Q. Qian et al., Quenching-induced atom-stepped bimetallic sulfide heterointerface catalysts for industrial hydrogen generation. eScience 5(2), 100311 (2025). https://doi.org/10.1016/j.esci.2024.100311
S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj, O.Y. Khyzhun, Electronic structure of FeWO4 and CoWO4 tungstates: first-principles FP-LAPW calculations and X-ray spectroscopy studies. J. Alloys Compd. 496(1–2), 61–68 (2010). https://doi.org/10.1016/j.jallcom.2010.02.107
C. Lyu, L. Zhang, X. Zhang, H. Zhang, H. Xie et al., Controlled synthesis of sub-millimeter nonlayered WO2 nanoplates via a WSe2-assisted method. Adv. Mater. 35(12), 2207895 (2023). https://doi.org/10.1002/adma.202207895
J. Liu, X. Xuan, Y. Yu, Q. Li, W. Wang et al., Regulating the local charge distribution in NiCo2O4@CoWO4 anode materials for hybrid asymmetric supercapacitors. Electrochim. Acta 510, 145381 (2025). https://doi.org/10.1016/j.electacta.2024.145381
Z. Yang, Z. Li, C. Yang, L. Meng, W. Guo et al., Synthesis of closely-contacted Cu2O-CoWO4 nanosheet composites for cuproptosis therapy to tumors with sonodynamic and photothermal assistance. Adv. Sci. 12(2), 2410621 (2025). https://doi.org/10.1002/advs.202410621
N. Li, X. Gao, J. Su, Y. Gao, L. Ge, Metallic WO2- decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis. Chin. J. Catal. 47, 161–170 (2023). https://doi.org/10.1016/S1872-2067(22)64210-4
L. Kong, L. Pan, H. Guo, Y. Qiu, W.A. Alshahrani et al., Constructing WS2/WO3-x heterostructured electrocatalyst enriched with oxygen vacancies for accelerated hydrogen evolution reaction. J. Colloid Interface Sci. 664, 178–185 (2024). https://doi.org/10.1016/j.jcis.2024.03.002
A.Q.K. Nguyen, Y.-Y. Ahn, G. Shin, Y. Cho, J. Lim et al., Degradation of organic compounds through both radical and nonradical activation of peroxymonosulfate using CoWO4 catalysts. Appl. Catal. B Environ. 324, 122266 (2023). https://doi.org/10.1016/j.apcatb.2022.122266
Y. Zuo, Y. Zhu, R. Wan, W. Su, Y. Fan et al., The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chem. Eng. J. 415, 129053 (2021). https://doi.org/10.1016/j.cej.2021.129053
A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (John Wiley and Sons Ltd, New York, 1980)
D. You, W. Yang, Y. Liang, C. Yang, Y. Yu et al., Regulation of Li2S deposition and dissolution to achieve an efficient bidirectional lithium–sulfur battery. Adv. Funct. Mater. 35(20), 2421900 (2025). https://doi.org/10.1002/adfm.202421900
L. Liang, L. Niu, T. Wu, D. Zhou, Z. Xiao, Fluorine-free fabrication of MXene via photo-Fenton approach for advanced lithium-sulfur batteries. ACS Nano 16(5), 7971–7981 (2022). https://doi.org/10.1021/acsnano.2c00779
W. Hou, P. Feng, X. Guo, Z. Wang, Z. Bai et al., Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries. Adv. Mater. 34(26), 2202222 (2022). https://doi.org/10.1002/adma.202202222
J. Xu, H. Zhang, F. Yu, Y. Cao, M. Liao et al., Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem. Int. Ed. 61(47), e202211933 (2022). https://doi.org/10.1002/anie.202211933
Q. Zeng, L. Xu, G. Li, Q. Zhang, S. Guo et al., Integrating sub-nano catalysts into metal-organic framework toward pore-confined polysulfides conversion in lithium-sulfur batteries. Adv. Funct. Mater. 33(43), 2304619 (2023). https://doi.org/10.1002/adfm.202304619
G. Zeng, Y. Liu, D. Chen, C. Zhen, Y. Han et al., Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries. Adv. Energy Mater. 11(44), 2102058 (2021). https://doi.org/10.1002/aenm.202102058
W. Hua, H. Li, C. Pei, J. Xia, Y. Sun et al., Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 33(38), e2101006 (2021). https://doi.org/10.1002/adma.202101006
J. Xu, W. Tang, C. Yang, I. Manke, N. Chen et al., A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li–S chemistry. ACS Energy Lett. 6(9), 3053–3062 (2021). https://doi.org/10.1021/acsenergylett.1c00943