Moisture-Resistant Scalable Ambient-Air Crystallization of Perovskite Films via Self-Buffered Molecular Migration Strategy
Corresponding Author: Chunfu Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 53
Abstract
Ambient-air, moisture-assisted annealing is widely used in fabricating perovskite solar cells (PSCs). However, the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecular exchange reaction—requires strict control of ambient humidity and immediate thermal annealing treatment, raising manufacturing costs and causing fast nucleation of perovskite films. We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n–butylammonium bromide shielding layer, which limits moisture diffusion into intermediate-phase film. This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air. Consequently, the optimized 1.68 eV-bandgap n-i-p structured PSC reaches a record-high reverse-scan (RS) PCE of 22.09%. Furthermore, the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials. The n-i-p structured PSCs based on 1.53 eV- and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23% and 19.09%, respectively, both of which are beyond of the state-of-the-art ambient-air processed PSCs.
Highlights:
1 A self-buffered molecular migration strategy is developed to suppress spontaneous intermolecular exchange between perovskite intermediate phase and ambient moisture.
2 Exceptionally broad nucleation time and humidity tolerance windows are achieved for perovskite crystallization under ambient air conditions. 1.68 eV-bandgap perovskite solar cells (PSCs) reach a record efficiency of 22.09% when processed in 50–60% relative humidity.
3 The strategy is broadly applicable to 1.53 eV- and 1.77 eV-bandgap perovskite films, enabling high-efficiency PSCs via air-based crystallization processing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- Z. Wu, S. Sang, J. Zheng, Q. Gao, B. Huang et al., Crystallization kinetics of hybrid perovskite solar cells. Angew. Chem. Int. Ed. 63(17), e202319170 (2024). https://doi.org/10.1002/anie.202319170
- N.L. Chang, J. Zheng, Y. Wu, H. Shen, F. Qi et al., A bottom-up cost analysis of silicon–perovskite tandem photovoltaics. Prog Photovolt Res Appl 29(3), 401–413 (2021). https://doi.org/10.1002/pip.3354
- K.J. Prince, H.M. Mirletz, E.A. Gaulding, L.M. Wheeler, R.A. Kerner et al., Sustainability pathways for perovskite photovoltaics. Nat. Mater. 24(1), 22–33 (2025). https://doi.org/10.1038/s41563-024-01945-6
- Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14(11), 5690–5722 (2021). https://doi.org/10.1039/D1EE02018H
- H. Zhou, K. Cai, S. Yu, Z. Wang, Z. Xiong et al., Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect. Nat. Commun. 15(1), 6679 (2024). https://doi.org/10.1038/s41467-024-50962-1
- C. Liu, Y.-B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/C9CS00711C
- K. Liu, Y. Luo, Y. Jin, T. Liu, Y. Liang et al., Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 13(1), 4891 (2022). https://doi.org/10.1038/s41467-022-32482-y
- T. Nie, J. Yang, Z. Fang, Z. Xu, X. Ren et al., Amino-acid-type alkylamine additive for high-performance wide-bandgap perovskite solar cells. Chem. Eng. J. 468, 143341 (2023). https://doi.org/10.1016/j.cej.2023.143341
- S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann et al., Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381(6653), 63–69 (2023). https://doi.org/10.1126/science.adf5872
- J.I.J. Choi, L.K. Ono, H. Cho, K.J. Kim, H.B. Kang et al., Pathways of water-induced lead-halide perovskite surface degradation: insights from In situ atomic-scale analysis. ACS Nano 17(24), 25679–25688 (2023). https://doi.org/10.1021/acsnano.3c10611
- S.-W. Kim, S.J. Moon, S.-H. Kim, J.J. Yoo, D. Kim et al., Reducing humidity dependency of ambient-air-processed wide-bandgap inverted perovskite solar cells. ACS Energy Lett. 8(11), 4777–4781 (2023). https://doi.org/10.1021/acsenergylett.3c01952
- S.Y. Kwon, B. Kang, J.H. Won, C.Y. Lee, K. Hwang et al., Importance of low humidity and selection of halide ions of octylammonium halide in 2D–3D perovskite solar cells fabricated in air. Adv. Mater. Interfaces 10(10), 2202249 (2023). https://doi.org/10.1002/admi.202202249
- C. Tian, T. Wu, X. Zhou, Y. Zhao, B. Li et al., Air-processed efficient perovskite solar cells with full lifecycle management. Adv. Mater. 37(1), e2411982 (2025). https://doi.org/10.1002/adma.202411982
- Z. Iqbal, R. Félix, A. Musiienko, J. Thiesbrummel, H. Köbler et al., Unveiling the potential of ambient air annealing for highly efficient inorganic CsPbI3 perovskite solar cells. J. Am. Chem. Soc. 146(7), 4642–4651 (2024). https://doi.org/10.1021/jacs.3c11711
- C. Wang, B. He, W. Hui, Z. Su, L. Chen et al., Controlling water for enhanced homogeneities in perovskite solar cells with remarkable reproducibility. Adv. Funct. Mater. 34(41), 2403690 (2024). https://doi.org/10.1002/adfm.202403690
- F. Ma, Y. Zhao, Z. Qu, J. You, Developments of highly efficient perovskite solar cells. Acc Mater Res 4(8), 716–725 (2023). https://doi.org/10.1021/accountsmr.3c00068
- K. Meng, C. Wang, Z. Qiao, Y. Zhai, R. Yu et al., Humidity-induced defect-healing of formamidinium-based perovskite films. Small 17(50), e2104165 (2021). https://doi.org/10.1002/smll.202104165
- J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng et al., Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). https://doi.org/10.1063/1.4901510
- H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
- H.-H. Huang, Z. Ma, J. Strzalka, Y. Ren, K.-F. Lin et al., Mild water intake orients crystal formation imparting high tolerance on unencapsulated halide perovskite solar cells. Cell Rep Phys Sci 2(4), 100395 (2021). https://doi.org/10.1016/j.xcrp.2021.100395
- K. Park, S. Tan, T. Kodalle, D.K. Lee, M. Abdelsamie et al., Atmospheric humidity underlies irreproducibility of formamidinium lead iodide perovskites. Adv. Mater. 36(14), e2307265 (2024). https://doi.org/10.1002/adma.202307265
- Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips et al., Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2–CH3NH3I–H2O system. Adv. Energy Mater. 6(19), 1600846 (2016). https://doi.org/10.1002/aenm.201600846
- S. Venkatesan, F. Hao, J. Kim, Y. Rong, Z. Zhu et al., Moisture-driven phase transition for improved perovskite solar cells with reduced trap-state density. Nano Res. 10(4), 1413–1422 (2017). https://doi.org/10.1007/s12274-017-1515-5
- H. Chen, J. Yang, Q. Cao, T. Wang, X. Pu et al., π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells. Nano Energy 117, 108883 (2023). https://doi.org/10.1016/j.nanoen.2023.108883
- W. Fan, K. Deng, Y. Shen, Y. Bai, L. Li, Moisture-accelerated precursor crystallisation in ambient air for high-performance perovskite solar cells toward mass production. Angew. Chem. Int. Ed. 61(42), e202211259 (2022). https://doi.org/10.1002/anie.202211259
- Y. Gao, D. Lin, P. Liu, T. Shi, W. Xie, Interaction mechanism between water molecules and perovskites. Mater Chem Front 8(3), 785–799 (2024). https://doi.org/10.1039/d3qm00969f
- Y. Shao, D. Zheng, L. Liu, J. Liu, M. Du et al., Innovations in interconnecting layers for perovskite-based tandem solar cells. ACS Energy Lett. 9(10), 4892–4921 (2024). https://doi.org/10.1021/acsenergylett.4c01703
- S. Qiu, L. Dong, D. Jang, F. Yang, J.G. Cerrillo et al., Printing high-quality formanidinum lead triiodide films: understanding the critical role of α-phase nucleation before thermal annealing. Adv. Energy Mater. 14(48), 2402616 (2024). https://doi.org/10.1002/aenm.202402616
- L. Ning, L. Song, Z. Yao, W.-H. Chen, P. Du et al., Intercepting the chelation of perovskites with ambient moisture through active addition reaction for full-air-processed perovskite solar cells. Adv. Energy Mater. 14(36), 2401320 (2024). https://doi.org/10.1002/aenm.202401320
- J. Shen, N. Li, Y. Wang, X. Ge, J. Tao et al., Delaying crystallization and anchoring the grain boundaries defects via π-π stacked molecules for efficient and stable wide-bandgap perovskite solar cells. Chem. Eng. J. 489, 151459 (2024). https://doi.org/10.1016/j.cej.2024.151459
- M. Kim, H. Kim, J. Sin, M. Kim, G. Kim et al., Unveiling the humidity effect and achieving an unprecedented 12% PCE in MAPbBr3 solar cells. Chem. Eng. J. 497, 154821 (2024). https://doi.org/10.1016/j.cej.2024.154821
- S. Guo, B. Fan, S. Yao, L. Rao, S. Zhang et al., The effect of interfacial humidity on the printing of highly reproducible perovskite solar cells in the air. Adv. Funct. Mater. 34(21), 2313715 (2024). https://doi.org/10.1002/adfm.202313715
- Y. Zhang, B. Yu, X. Wei, H. Yu, Using post-treatment additives for crystal modulation and interface passivation enables the fabrication of efficient and stable perovskite solar cells in air. Adv. Energy Mater. 15(7), 2402990 (2025). https://doi.org/10.1002/aenm.202402990
- Y. Song, Z. Liu, X. Cai, H. Ge, X. Liu et al., Efficient and moisture resistant wide-bandgap perovskite solar cells with phosphinate-based iodine defect passivation. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202500650
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22(1), 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
- M. Chen, T. Niu, L. Chao, X. Duan, J. Wang et al., “Freezing” intermediate phases for efficient and stable FAPbI3 perovskite solar cells. Energy Environ. Sci. 17(10), 3375–3383 (2024). https://doi.org/10.1039/D4EE00865K
- Y. Wang, Z. Zhang, Z. Zeng et al., Intermediate state formation extends the ambient temperature processing window of solution-processed perovskite solar cells. ACS Energy Lett. 10(2), 647–657 (2025). https://doi.org/10.1021/acsenergylett.4c03119
- S. Ma, X. Xue, K. Wang, Q. Wen, Y. Han et al., Intermediate phase modification enables high-performance iodine-rich inorganic perovskite solar cells with 3000-hour stability. Adv. Energy Mater. 14(8), 2303193 (2024). https://doi.org/10.1002/aenm.202303193
- G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
- G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15(9), 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
- S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
- T. Han, W. Zhu, T. Wang, M. Yang, Y. Zhou et al., MXene-interconnected two-terminal, mechanically-stacked perovskite/silicon tandem solar cell with high efficiency. Adv. Funct. Mater. 34(12), 2311679 (2024). https://doi.org/10.1002/adfm.202311679
- Y. Gao, H. Raza, Z. Zhang, W. Chen, Z. Liu, Rethinking the role of excess/residual lead iodide in perovskite solar cells. Adv. Funct. Mater. 33(26), 2215171 (2023). https://doi.org/10.1002/adfm.202215171
- W. Zhu, M. Yang, T. Han, Y. Wang, X. Luo et al., Homogeneous crystallization of MA-free, wide-bandgap perovskite films via self-assembled monolayer capping for laminated silicon/perovskite tandem solar cells. Chem. Eng. J. 500, 156798 (2024). https://doi.org/10.1016/j.cej.2024.156798
- Y. Ma, F. Li, J. Gong, L. Wang, X. Tang et al., Bi-molecular kinetic competition for surface passivation in high-performance perovskite solar cells. Energy Environ. Sci. 17(4), 1570–1579 (2024). https://doi.org/10.1039/D3EE03439A
- S. Gharibzadeh, B. Abdollahi Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J.A. Schwenzer, P. Brenner, R. Schmager, A.A. Haghighirad, L. Weinhardt, Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9(21), 1803699 (2019). https://doi.org/10.1002/aenm.201803699
- L. Lin, T.W. Jones, T.C. Yang, X. Li, C. Wu et al., Hydrogen bonding in perovskite solar cells. Matter 7(1), 38–58 (2024). https://doi.org/10.1016/j.matt.2023.10.013
- B. Tian, P. Zhang, T. Liu, W. Chu, Y. Long et al., Interfacial coordination utilizing chelating ligands for operationally stable perovskite solar modules. Energy Environ. Sci. 17(24), 9601–9610 (2024). https://doi.org/10.1039/D4EE02803A
- X. Wang, G. Zheng, F. Gao, L. Li, C. Luo et al., In situ study of purified phase transition path for α-FAPbI3 crystallization. Adv. Energy Mater. 14(14), 2303949 (2024). https://doi.org/10.1002/aenm.202303949
- H. Dong, J. Qu, X. Yue, Y. Zhao, W. Wang et al., Regulating the perovskite crystallization dynamics via dual modulation strategy for performance enhancement of perovskite solar cells. Adv. Energy Mater. 15(13), 2403965 (2025). https://doi.org/10.1002/aenm.202403965
- Q. Zhou, B. Liu, Y. Chen, D. Ma, X. Han et al., Managing photons and carriers by multisite chiral molecules achieving high-performance perovskite solar cells fabricated in ambient air. Nano Energy 124, 109512 (2024). https://doi.org/10.1016/j.nanoen.2024.109512
- J. Ge, R. Chen, Y. Ma, Y. Wang, Y. Hu et al., Kinetics controlled perovskite crystallization for high performance solar cells. Angew. Chem. Int. Ed. 63(14), e202319282 (2024). https://doi.org/10.1002/anie.202319282
- L. Yang, Z. Fang, Y. Jin, H. Feng, B. Deng, L. Zheng, P. Xu, J. Chen, X. Chen, Y. Zhou, C. Shi, Suppressing halide segregation via pyridine-derivative isomers enables efficient 1 68 ev bandgap perovskite solar cells. Adv. Mater. 36(21), 2311923 (2024). https://doi.org/10.1002/adma.202311923
- F. Scheler, S. Mariotti, D. Mantione, S. Shah, D. Menzel, H. Köbler, M. Simmonds, T.W. Gries, J. Kurpiers, V. Škorjanc, J. Li, Correlation of band bending and ionic losses in 1 68 ev wide band gap perovskite solar cells. Adv. Energy Mater. 15(16), 2404726 (2025). https://doi.org/10.1002/aenm.202404726
- N. Kalasariya, A. Alexander, P.K. Bhunia, E. Gutierrez-Partida, R. Benny et al., Controlling lead halide residue in perovskite solar cells: a method to improve the photostability and hysteresis. Sol. RRL 8(1), 2300788 (2024). https://doi.org/10.1002/solr.202300788
- X. Li, S. Aftab, A. Abbas, S. Hussain, M. Aslam et al., Advances in mixed 2D and 3D perovskite heterostructure solar cells: a comprehensive review. Nano Energy 118, 108979 (2023). https://doi.org/10.1016/j.nanoen.2023.108979
- Y. Zhao, C. Wang, T. Ma, L. Zhou, Z. Wu, H. Wang, C. Chen, Z. Yu, W. Sun, A. Wang, H. Huang, Reduced 0 418 VV OC-deficit of 1 73 eV wide-bandgap perovskite solar cells assisted by dual chlorides for efficient all-perovskite tandems. Energy Environ. Sci. 16(5), 2080–2089 (2023). https://doi.org/10.1039/D2EE04087E
- Z. Yi, W. Wang, R. He, J. Zhu, W. Jiao, Y. Luo, Y. Xu, Y. Wang, Z. Zeng, K. Wei, J. Zhang, Achieving a high open-circuit voltage of 1 339 V in 1 77 eV wide-bandgap perovskite solar cells via self-assembled monolayers. Energy Environ. Sci. 17(1), 202–209 (2024). https://doi.org/10.1039/D3EE02839A
- Z. Song, K. Sun, Y. Meng, Z. Zhu, Y. Wang et al., Universal approach for managing iodine migration in inverted single-junction and tandem perovskite solar cells. Adv. Mater. 37(3), 2410779 (2025). https://doi.org/10.1002/adma.202410779
- Y. Ge, L. Zheng, H. Wang, J. Gao, F. Yao et al., Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells. Nat. Photonics 19(2), 170–177 (2025). https://doi.org/10.1038/s41566-024-01570-4
- Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
Z. Wu, S. Sang, J. Zheng, Q. Gao, B. Huang et al., Crystallization kinetics of hybrid perovskite solar cells. Angew. Chem. Int. Ed. 63(17), e202319170 (2024). https://doi.org/10.1002/anie.202319170
N.L. Chang, J. Zheng, Y. Wu, H. Shen, F. Qi et al., A bottom-up cost analysis of silicon–perovskite tandem photovoltaics. Prog Photovolt Res Appl 29(3), 401–413 (2021). https://doi.org/10.1002/pip.3354
K.J. Prince, H.M. Mirletz, E.A. Gaulding, L.M. Wheeler, R.A. Kerner et al., Sustainability pathways for perovskite photovoltaics. Nat. Mater. 24(1), 22–33 (2025). https://doi.org/10.1038/s41563-024-01945-6
Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14(11), 5690–5722 (2021). https://doi.org/10.1039/D1EE02018H
H. Zhou, K. Cai, S. Yu, Z. Wang, Z. Xiong et al., Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect. Nat. Commun. 15(1), 6679 (2024). https://doi.org/10.1038/s41467-024-50962-1
C. Liu, Y.-B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49(6), 1653–1687 (2020). https://doi.org/10.1039/C9CS00711C
K. Liu, Y. Luo, Y. Jin, T. Liu, Y. Liang et al., Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 13(1), 4891 (2022). https://doi.org/10.1038/s41467-022-32482-y
T. Nie, J. Yang, Z. Fang, Z. Xu, X. Ren et al., Amino-acid-type alkylamine additive for high-performance wide-bandgap perovskite solar cells. Chem. Eng. J. 468, 143341 (2023). https://doi.org/10.1016/j.cej.2023.143341
S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann et al., Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381(6653), 63–69 (2023). https://doi.org/10.1126/science.adf5872
J.I.J. Choi, L.K. Ono, H. Cho, K.J. Kim, H.B. Kang et al., Pathways of water-induced lead-halide perovskite surface degradation: insights from In situ atomic-scale analysis. ACS Nano 17(24), 25679–25688 (2023). https://doi.org/10.1021/acsnano.3c10611
S.-W. Kim, S.J. Moon, S.-H. Kim, J.J. Yoo, D. Kim et al., Reducing humidity dependency of ambient-air-processed wide-bandgap inverted perovskite solar cells. ACS Energy Lett. 8(11), 4777–4781 (2023). https://doi.org/10.1021/acsenergylett.3c01952
S.Y. Kwon, B. Kang, J.H. Won, C.Y. Lee, K. Hwang et al., Importance of low humidity and selection of halide ions of octylammonium halide in 2D–3D perovskite solar cells fabricated in air. Adv. Mater. Interfaces 10(10), 2202249 (2023). https://doi.org/10.1002/admi.202202249
C. Tian, T. Wu, X. Zhou, Y. Zhao, B. Li et al., Air-processed efficient perovskite solar cells with full lifecycle management. Adv. Mater. 37(1), e2411982 (2025). https://doi.org/10.1002/adma.202411982
Z. Iqbal, R. Félix, A. Musiienko, J. Thiesbrummel, H. Köbler et al., Unveiling the potential of ambient air annealing for highly efficient inorganic CsPbI3 perovskite solar cells. J. Am. Chem. Soc. 146(7), 4642–4651 (2024). https://doi.org/10.1021/jacs.3c11711
C. Wang, B. He, W. Hui, Z. Su, L. Chen et al., Controlling water for enhanced homogeneities in perovskite solar cells with remarkable reproducibility. Adv. Funct. Mater. 34(41), 2403690 (2024). https://doi.org/10.1002/adfm.202403690
F. Ma, Y. Zhao, Z. Qu, J. You, Developments of highly efficient perovskite solar cells. Acc Mater Res 4(8), 716–725 (2023). https://doi.org/10.1021/accountsmr.3c00068
K. Meng, C. Wang, Z. Qiao, Y. Zhai, R. Yu et al., Humidity-induced defect-healing of formamidinium-based perovskite films. Small 17(50), e2104165 (2021). https://doi.org/10.1002/smll.202104165
J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng et al., Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). https://doi.org/10.1063/1.4901510
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
H.-H. Huang, Z. Ma, J. Strzalka, Y. Ren, K.-F. Lin et al., Mild water intake orients crystal formation imparting high tolerance on unencapsulated halide perovskite solar cells. Cell Rep Phys Sci 2(4), 100395 (2021). https://doi.org/10.1016/j.xcrp.2021.100395
K. Park, S. Tan, T. Kodalle, D.K. Lee, M. Abdelsamie et al., Atmospheric humidity underlies irreproducibility of formamidinium lead iodide perovskites. Adv. Mater. 36(14), e2307265 (2024). https://doi.org/10.1002/adma.202307265
Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips et al., Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2–CH3NH3I–H2O system. Adv. Energy Mater. 6(19), 1600846 (2016). https://doi.org/10.1002/aenm.201600846
S. Venkatesan, F. Hao, J. Kim, Y. Rong, Z. Zhu et al., Moisture-driven phase transition for improved perovskite solar cells with reduced trap-state density. Nano Res. 10(4), 1413–1422 (2017). https://doi.org/10.1007/s12274-017-1515-5
H. Chen, J. Yang, Q. Cao, T. Wang, X. Pu et al., π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells. Nano Energy 117, 108883 (2023). https://doi.org/10.1016/j.nanoen.2023.108883
W. Fan, K. Deng, Y. Shen, Y. Bai, L. Li, Moisture-accelerated precursor crystallisation in ambient air for high-performance perovskite solar cells toward mass production. Angew. Chem. Int. Ed. 61(42), e202211259 (2022). https://doi.org/10.1002/anie.202211259
Y. Gao, D. Lin, P. Liu, T. Shi, W. Xie, Interaction mechanism between water molecules and perovskites. Mater Chem Front 8(3), 785–799 (2024). https://doi.org/10.1039/d3qm00969f
Y. Shao, D. Zheng, L. Liu, J. Liu, M. Du et al., Innovations in interconnecting layers for perovskite-based tandem solar cells. ACS Energy Lett. 9(10), 4892–4921 (2024). https://doi.org/10.1021/acsenergylett.4c01703
S. Qiu, L. Dong, D. Jang, F. Yang, J.G. Cerrillo et al., Printing high-quality formanidinum lead triiodide films: understanding the critical role of α-phase nucleation before thermal annealing. Adv. Energy Mater. 14(48), 2402616 (2024). https://doi.org/10.1002/aenm.202402616
L. Ning, L. Song, Z. Yao, W.-H. Chen, P. Du et al., Intercepting the chelation of perovskites with ambient moisture through active addition reaction for full-air-processed perovskite solar cells. Adv. Energy Mater. 14(36), 2401320 (2024). https://doi.org/10.1002/aenm.202401320
J. Shen, N. Li, Y. Wang, X. Ge, J. Tao et al., Delaying crystallization and anchoring the grain boundaries defects via π-π stacked molecules for efficient and stable wide-bandgap perovskite solar cells. Chem. Eng. J. 489, 151459 (2024). https://doi.org/10.1016/j.cej.2024.151459
M. Kim, H. Kim, J. Sin, M. Kim, G. Kim et al., Unveiling the humidity effect and achieving an unprecedented 12% PCE in MAPbBr3 solar cells. Chem. Eng. J. 497, 154821 (2024). https://doi.org/10.1016/j.cej.2024.154821
S. Guo, B. Fan, S. Yao, L. Rao, S. Zhang et al., The effect of interfacial humidity on the printing of highly reproducible perovskite solar cells in the air. Adv. Funct. Mater. 34(21), 2313715 (2024). https://doi.org/10.1002/adfm.202313715
Y. Zhang, B. Yu, X. Wei, H. Yu, Using post-treatment additives for crystal modulation and interface passivation enables the fabrication of efficient and stable perovskite solar cells in air. Adv. Energy Mater. 15(7), 2402990 (2025). https://doi.org/10.1002/aenm.202402990
Y. Song, Z. Liu, X. Cai, H. Ge, X. Liu et al., Efficient and moisture resistant wide-bandgap perovskite solar cells with phosphinate-based iodine defect passivation. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202500650
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22(1), 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
M. Chen, T. Niu, L. Chao, X. Duan, J. Wang et al., “Freezing” intermediate phases for efficient and stable FAPbI3 perovskite solar cells. Energy Environ. Sci. 17(10), 3375–3383 (2024). https://doi.org/10.1039/D4EE00865K
Y. Wang, Z. Zhang, Z. Zeng et al., Intermediate state formation extends the ambient temperature processing window of solution-processed perovskite solar cells. ACS Energy Lett. 10(2), 647–657 (2025). https://doi.org/10.1021/acsenergylett.4c03119
S. Ma, X. Xue, K. Wang, Q. Wen, Y. Han et al., Intermediate phase modification enables high-performance iodine-rich inorganic perovskite solar cells with 3000-hour stability. Adv. Energy Mater. 14(8), 2303193 (2024). https://doi.org/10.1002/aenm.202303193
G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684
G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15(9), 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
T. Han, W. Zhu, T. Wang, M. Yang, Y. Zhou et al., MXene-interconnected two-terminal, mechanically-stacked perovskite/silicon tandem solar cell with high efficiency. Adv. Funct. Mater. 34(12), 2311679 (2024). https://doi.org/10.1002/adfm.202311679
Y. Gao, H. Raza, Z. Zhang, W. Chen, Z. Liu, Rethinking the role of excess/residual lead iodide in perovskite solar cells. Adv. Funct. Mater. 33(26), 2215171 (2023). https://doi.org/10.1002/adfm.202215171
W. Zhu, M. Yang, T. Han, Y. Wang, X. Luo et al., Homogeneous crystallization of MA-free, wide-bandgap perovskite films via self-assembled monolayer capping for laminated silicon/perovskite tandem solar cells. Chem. Eng. J. 500, 156798 (2024). https://doi.org/10.1016/j.cej.2024.156798
Y. Ma, F. Li, J. Gong, L. Wang, X. Tang et al., Bi-molecular kinetic competition for surface passivation in high-performance perovskite solar cells. Energy Environ. Sci. 17(4), 1570–1579 (2024). https://doi.org/10.1039/D3EE03439A
S. Gharibzadeh, B. Abdollahi Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J.A. Schwenzer, P. Brenner, R. Schmager, A.A. Haghighirad, L. Weinhardt, Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9(21), 1803699 (2019). https://doi.org/10.1002/aenm.201803699
L. Lin, T.W. Jones, T.C. Yang, X. Li, C. Wu et al., Hydrogen bonding in perovskite solar cells. Matter 7(1), 38–58 (2024). https://doi.org/10.1016/j.matt.2023.10.013
B. Tian, P. Zhang, T. Liu, W. Chu, Y. Long et al., Interfacial coordination utilizing chelating ligands for operationally stable perovskite solar modules. Energy Environ. Sci. 17(24), 9601–9610 (2024). https://doi.org/10.1039/D4EE02803A
X. Wang, G. Zheng, F. Gao, L. Li, C. Luo et al., In situ study of purified phase transition path for α-FAPbI3 crystallization. Adv. Energy Mater. 14(14), 2303949 (2024). https://doi.org/10.1002/aenm.202303949
H. Dong, J. Qu, X. Yue, Y. Zhao, W. Wang et al., Regulating the perovskite crystallization dynamics via dual modulation strategy for performance enhancement of perovskite solar cells. Adv. Energy Mater. 15(13), 2403965 (2025). https://doi.org/10.1002/aenm.202403965
Q. Zhou, B. Liu, Y. Chen, D. Ma, X. Han et al., Managing photons and carriers by multisite chiral molecules achieving high-performance perovskite solar cells fabricated in ambient air. Nano Energy 124, 109512 (2024). https://doi.org/10.1016/j.nanoen.2024.109512
J. Ge, R. Chen, Y. Ma, Y. Wang, Y. Hu et al., Kinetics controlled perovskite crystallization for high performance solar cells. Angew. Chem. Int. Ed. 63(14), e202319282 (2024). https://doi.org/10.1002/anie.202319282
L. Yang, Z. Fang, Y. Jin, H. Feng, B. Deng, L. Zheng, P. Xu, J. Chen, X. Chen, Y. Zhou, C. Shi, Suppressing halide segregation via pyridine-derivative isomers enables efficient 1 68 ev bandgap perovskite solar cells. Adv. Mater. 36(21), 2311923 (2024). https://doi.org/10.1002/adma.202311923
F. Scheler, S. Mariotti, D. Mantione, S. Shah, D. Menzel, H. Köbler, M. Simmonds, T.W. Gries, J. Kurpiers, V. Škorjanc, J. Li, Correlation of band bending and ionic losses in 1 68 ev wide band gap perovskite solar cells. Adv. Energy Mater. 15(16), 2404726 (2025). https://doi.org/10.1002/aenm.202404726
N. Kalasariya, A. Alexander, P.K. Bhunia, E. Gutierrez-Partida, R. Benny et al., Controlling lead halide residue in perovskite solar cells: a method to improve the photostability and hysteresis. Sol. RRL 8(1), 2300788 (2024). https://doi.org/10.1002/solr.202300788
X. Li, S. Aftab, A. Abbas, S. Hussain, M. Aslam et al., Advances in mixed 2D and 3D perovskite heterostructure solar cells: a comprehensive review. Nano Energy 118, 108979 (2023). https://doi.org/10.1016/j.nanoen.2023.108979
Y. Zhao, C. Wang, T. Ma, L. Zhou, Z. Wu, H. Wang, C. Chen, Z. Yu, W. Sun, A. Wang, H. Huang, Reduced 0 418 VV OC-deficit of 1 73 eV wide-bandgap perovskite solar cells assisted by dual chlorides for efficient all-perovskite tandems. Energy Environ. Sci. 16(5), 2080–2089 (2023). https://doi.org/10.1039/D2EE04087E
Z. Yi, W. Wang, R. He, J. Zhu, W. Jiao, Y. Luo, Y. Xu, Y. Wang, Z. Zeng, K. Wei, J. Zhang, Achieving a high open-circuit voltage of 1 339 V in 1 77 eV wide-bandgap perovskite solar cells via self-assembled monolayers. Energy Environ. Sci. 17(1), 202–209 (2024). https://doi.org/10.1039/D3EE02839A
Z. Song, K. Sun, Y. Meng, Z. Zhu, Y. Wang et al., Universal approach for managing iodine migration in inverted single-junction and tandem perovskite solar cells. Adv. Mater. 37(3), 2410779 (2025). https://doi.org/10.1002/adma.202410779
Y. Ge, L. Zheng, H. Wang, J. Gao, F. Yao et al., Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells. Nat. Photonics 19(2), 170–177 (2025). https://doi.org/10.1038/s41566-024-01570-4
Y. Wang, R. Lin, C. Liu, X. Wang, C. Chosy et al., Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635(8040), 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6