Se-Regulated MnS Porous Nanocubes Encapsulated in Carbon Nanofibers as High-Performance Anode for Sodium-Ion Batteries
Corresponding Author: Zhenhai Wen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 237
Abstract
Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries (SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS0.5Se0.5 into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS0.5Se0.5-carbon nanofiber composite (MnS0.5Se0.5@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS0.5Se0.5, including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS0.5Se0.5@N-CNF alleviates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS0.5Se0.5@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency (90.8%), high-rate capability (370.5 mAh g−1 at 10 A g−1) and long durability (over 5000 cycles at 5 A g−1). The MnS0.5Se0.5@N-CNF //NVP@C full cell, assembled with MnS0.5Se0.5@N-CNF as anode and Na3V2(PO4)3@C as cathode, exhibits a high energy density of 254 Wh kg−1 can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms.
Highlights:
1 We have developed an efficient and scalable strategy to prepare a single-phase ternary MnS0.5Se0.5-carbon nanofiber composite with a defect-rich microstructure.
2 The Na+ storage mechanism of manganese-based sulfides after the incorporation of Se was thoroughly investigated, through systematic electrochemical characterization combined with theoretical calculations.
3 The MnS0.5Se0.5@N-carbon nanofiber composite, used as an anode, exhibits excellent reversible capacity, rate capability, and cycling stability in sodium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu et al., High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater. 6(5), e12450 (2023). https://doi.org/10.1002/eem2.12450
- F. Hartmann, M. Etter, G. Cibin, L. Liers, H. Terraschke et al., Superior sodium storage properties in the anode material NiCr2S4 for sodium-ion batteries: an X-ray diffraction, pair distribution function, and X-ray absorption study reveals a conversion mechanism via nickel extrusion. Adv. Mater. 33(44), 2101576 (2021). https://doi.org/10.1002/adma.202101576
- R. Shao, Z. Sun, L. Wang, J. Pan, L. Yi et al., Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a comparison with lithium-ion batteries. Angew. Chem. Int. Ed. 63(11), e202320183 (2024). https://doi.org/10.1002/anie.202320183
- T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad et al., Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549
- F. Wang, Z. Jiang, Y. Zhang, Y. Zhang, J. Li et al., Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon. eScience 4(3), 100181 (2024). https://doi.org/10.1016/j.esci.2023.100181
- D.T. Pham, T.T. Vu, S. Kim, B. Sambandam, V. Mathew et al., A versatile pyramidal hauerite anode in congeniality diglyme-based electrolytes for boosting performance of Li- and Na-ion batteries. Adv. Energy Mater. 9(37), 1900710 (2019). https://doi.org/10.1002/aenm.201900710
- S. Li, J. Chen, J. Xiong, X. Gong, J. Ciou et al., Encapsulation of MnS nanocrystals into N, S-co-doped carbon as anode material for full cell sodium-ion capacitors. Nano-Micro Lett. 12(1), 34 (2020). https://doi.org/10.1007/s40820-020-0367-9
- Y. Ma, Y. Ma, G.-T. Kim, T. Diemant, R.J. Behm et al., Superior lithium storage capacity of α-MnS nanops embedded in S-doped carbonaceous mesoporous frameworks. Adv. Energy Mater. 9(43), 1902077 (2019). https://doi.org/10.1002/aenm.201902077
- D.-H. Liu, W.-H. Li, Y.-P. Zheng, Z. Cui, X. Yan et al., In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 30(21), e1706317 (2018). https://doi.org/10.1002/adma.201706317
- W. Zhao, X. Ma, L. Gao, X. Wang, Y. Luo et al., Hierarchical architecture engineering of branch-leaf-shaped cobalt phosphosulfide quantum dots: enabling multi-dimensional ion-transport channels for high-efficiency sodium storage. Adv. Mater. 36(4), 2305190 (2024). https://doi.org/10.1002/adma.202305190
- Y. Zhou, M. Zhang, Q. Wang, J. Yang, X. Luo et al., Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 13(3), 691–700 (2020). https://doi.org/10.1007/s12274-020-2677-0
- M. Han, J. Liu, C. Deng, J. Guo, Y. Mu et al., Yolk-shell structure and spin-polarized surface capacitance enable FeS stable and fast ion transport in sodium-ion batteries. Adv. Energy Mater. 14(22), 2400246 (2024). https://doi.org/10.1002/aenm.202400246
- Z. Li, G. Zhou, S. Li, H. Liu, L. Wang et al., Unlocking cycling longevity in micro-sized conversion-type FeS2 cathodes. Joule 7(11), 2609–2621 (2023). https://doi.org/10.1016/j.joule.2023.10.003
- R. Hu, H. Zhao, J. Zhang, Q. Liang, Y. Wang et al., Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion–sulfurization process for high-capacity sodium-ion batteries. Nanoscale 11(1), 178–184 (2019). https://doi.org/10.1039/C8NR06675B
- W. Huang, H. Sun, H. Shangguan, X. Cao, X. Xiao et al., Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale 10(16), 7851–7859 (2018). https://doi.org/10.1039/c8nr00034d
- F. Chen, D. Shi, M. Yang, H. Jiang, Y. Shao et al., Novel designed MnS–MoS2 heterostructure for fast and stable Li/Na storage: insights into the advanced mechanism attributed to phase engineering. Adv. Funct. Mater. 31(6), 2007132 (2021). https://doi.org/10.1002/adfm.202007132
- R. Liu, L. Yu, X. He, H. Liu, X. Ma et al., Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability. eScience 3(4), 100138 (2023). https://doi.org/10.1016/j.esci.2023.100138
- J. Lv, D. Bai, L. Yang, Y. Guo, H. Yan et al., Bimetallic sulfide nanops confined by dual-carbon nanostructures as anodes for lithium-/ sodium-ion batteries. Chem. Commun. 54(64), 8909–8912 (2018). https://doi.org/10.1039/C8CC04318C
- H. Lei, H. Wang, B. Cheng, F. Zhang, X. Liu et al., Anion-vacancy modified WSSe nanosheets on 3D cross-networked porous carbon skeleton for non-aqueous sodium-based dual-ion storage. Small 19(10), 2206340 (2023). https://doi.org/10.1002/smLl.202206340
- Y. Liu, X. Hu, J. Li, G. Zhong, J. Yuan et al., Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 13(1), 663 (2022). https://doi.org/10.1038/s41467-022-28176-0
- Z. Tian, W. Sun, J. Yu, J. Yuan, J. Chen et al., Vacancy-rich ternary iron phosphoselenide multicavity nanorods: a highly reversible and fast anode for sodium-ion batteries. Adv. Funct. Mater. 34(39), 2404320 (2024). https://doi.org/10.1002/adfm.202404320
- S. Xing, J. Yang, M. Muska, H. Li, Q. Yang, Rock-salt MnS0.5Se0.5 nanocubes assembled on N-doped graphene forming van der waals heterostructured hybrids as high-performance anode for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 13(19), 22608–22620 (2021). https://doi.org/10.1021/acsami.1c04776
- B. Haruna, L. Wang, X. Hu, G. Luo, M.A. Muhammad et al., Se-rich functionalized FeSx hollow nanospheres for accelerated and long-lasting sodium storage. Adv. Funct. Mater. 35(4), 2414246 (2025). https://doi.org/10.1002/adfm.202414246
- B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31(31), 2101066 (2021). https://doi.org/10.1002/adfm.202101066
- Y. Huang, Z. Wang, M. Guan, F. Wu, R. Chen, Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Adv. Mater. 32(40), e2003534 (2020). https://doi.org/10.1002/adma.202003534
- T. He, W. Zhao, J. Hu, C. Deng, D. Yan et al., Unveiling the double-edged behavior of controlled selenium substitution in cobalt sulfide for balanced Na-storage capacity and rate capability. Adv. Funct. Mater. 34(8), 2310256 (2024). https://doi.org/10.1002/adfm.202310256
- X. Hu, M. Qiu, Y. Liu, J. Yuan, J. Chen et al., Interface and structure engineering of tin-based chalcogenide anodes for durable and fast-charging sodium ion batteries. Adv. Energy Mater. 12(47), 2202318 (2022). https://doi.org/10.1002/aenm.202202318
- J. Zhang, Y. Wang, M. Yu, J. Ni, L. Li, Understanding the role of topotactic anion exchange in the robust Cu ion storage of CuS1–xSex. ACS Energy Lett. 7(5), 1835–1841 (2022). https://doi.org/10.1021/acsenergylett.2c00766
- X. Wang, D. Chen, Z. Yang, X. Zhang, C. Wang et al., Novel metal chalcogenide SnSSe as a high-capacity anode for sodium-ion batteries. Adv. Mater. 28(39), 8645–8650 (2016). https://doi.org/10.1002/adma.201603219
- X. Wu, M. Caol, H. Lü, X. He, C. Hu, Microemulsion-mediated solvothermal synthesis and morphological evolution of MnCO3 nanocrystals. J. Nanosci. Nanotechnol. 6(7), 2123–2128 (2006). https://doi.org/10.1166/jnn.2006.371
- J. Zhu, P. Wei, Q. Zeng, G. Wang, K. Wu et al., MnS@N, S Co-doped carbon core/shell nanocubes: sulfur-bridged bonds enhanced Na-storage properties revealed by in situ Raman spectroscopy and transmission electron microscopy. Small 16(45), 2003001 (2020). https://doi.org/10.1002/smLl.202003001
- C. Guo, R. Zhou, X. Liu, R. Tang, W. Xi et al., Activating the MnS0.5Se0.5 microspheres as high-performance cathode materials for aqueous zinc-ion batteries: insight into in situ electrooxidation behavior and energy storage mechanisms. Small 20(15), 2306237 (2024). https://doi.org/10.1002/smLl.202306237
- K.Y. Yasoda, M. Afshan, S.C. Caroline, E.M. Harini, K. Ghosh et al., Polyaniline with manganese based mixed chalcogenides (MnSSe-HT-PANI) heterostructure for the development of high-performance flexible supercapacitor. Electrochim. Acta 480, 143879 (2024). https://doi.org/10.1016/j.electacta.2024.143879
- A. Zhang, R. Zhao, Y. Wang, J. Yang, C. Wu et al., Regulating the electronic structure of manganese-based materials to optimize the performance of zinc-ion batteries. Energy Environ. Sci. 16(8), 3240–3301 (2023). https://doi.org/10.1039/D3EE01344H
- C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse et al., First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1), 253–305 (2014). https://doi.org/10.1103/revmodphys.86.253
- D. Lan, Y. Zhao, Y. Liu, N. Zhu, J. Cui, Self-assembled nano-MnS@N, P dual-doped lignite based carbon as high-performance sodium-ion batteries anode. J. Energy Storage 90, 111827 (2024). https://doi.org/10.1016/j.est.2024.111827
- X. Xu, S. Ji, M. Gu, J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 7(37), 20957–20964 (2015). https://doi.org/10.1021/acsami.5b06590
- T. Wang, L. Yin, R. Zhao, C. Xia, X. Zhao et al., First-principles study of monolayer SnS2(1–x)Se2x alloys as anode materials for lithium ion batteries. Appl. Surf. Sci. 457, 256–263 (2018). https://doi.org/10.1016/j.apsusc.2018.06.030
- Y. Xiao, J.-Y. Hwang, I. Belharouak, Y.-K. Sun, Superior Li/Na-storage capability of a carbon-free hierarchical CoSx hollow nanostructure. Nano Energy 32, 320–328 (2017). https://doi.org/10.1016/j.nanoen.2016.12.053
- T. Li, Y. Wang, L. Yuan, Q. Zhou, S. Qiao et al., An α-MnSe nanorod as anode for superior potassium-ion storage via synergistic effects of physical encapsulation and chemical bonding. Chem. Eng. J. 446, 137152 (2022). https://doi.org/10.1016/j.cej.2022.137152
- Y. Chu, L. Guo, B. Xi, Z. Feng, F. Wu et al., Embedding MnO@Mn3O4 nanops in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv. Mater. 30(6), 1704244 (2018). https://doi.org/10.1002/adma.201704244
- C. An, Y. Yuan, B. Zhang, L. Tang, B. Xiao et al., Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 9(18), 1900356 (2019). https://doi.org/10.1002/aenm.201900356
- W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang et al., High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 31(8), 1806664 (2019). https://doi.org/10.1002/adma.201806664
- P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 28(30), 1801765 (2018). https://doi.org/10.1002/adfm.201801765
- Y. Xiao, Y. Miao, S. Hu, F. Gong, Q. Yu et al., Structural stability boosted in 3D carbon-free iron selenide through engineering heterointerfaces with Se–P bonds for appealing Na+-storage. Adv. Funct. Mater. 33(5), 2210042 (2023). https://doi.org/10.1002/adfm.202210042
- D.-H. Liu, W.-H. Li, H.-J. Liang, H.-Y. Lü, J.-Z. Guo et al., Coaxial α-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. J. Mater. Chem. A 6(32), 15797–15806 (2018). https://doi.org/10.1039/C8TA03967D
- S. Cao, Q. Liu, H. Chen, H. Zhu, Y. Liu, A bimetallic induced enhanced 3D electron transport network supported by micro constrain area of balls-in-ball structure used for high performance sodium storage. Chem. Eng. J. 470, 144277 (2023). https://doi.org/10.1016/j.cej.2023.144277
- W. Sun, X. Tang, Q. Yang, Y. Xu, F. Wu et al., Coordination-induced interlinked covalent- and metal-organic-framework hybrids for enhanced lithium storage. Adv. Mater. 31(37), e1903176 (2019). https://doi.org/10.1002/adma.201903176
- S. Xing, J. Yang, C. Wang, J. Zhou, J. Zhang et al., Fabrication of van der waals heterostructured FePSe3/carbon hybrid nanosheets for sodium storage with high performance. ACS Appl. Mater. Interfaces 12(49), 54732–54741 (2020). https://doi.org/10.1021/acsami.0c16396
- Y. Sang, L. Wang, X. Cao, G. Ding, Y. Ding et al., Emerging 2D-Layered MnPS3/rGO composite as a superior anode for sodium-ion batteries. J. Alloys Compd. 831, 154775 (2020). https://doi.org/10.1016/j.jallcom.2020.154775
- T. Zheng, P. Hu, Z. Wang, T. Guo, 2D amorphous iron selenide sulfide nanosheets for stable and rapid sodium-ion storage. Adv. Mater. 35(48), e2306577 (2023). https://doi.org/10.1002/adma.202306577
- C. Wang, B. Zhang, H. Xia, L. Cao, B. Luo et al., Composition and architecture design of double-shelled Co0.85Se1-xSx@Carbon/graphene hollow polyhedron with superior alkali (Li, Na, K)-ion storage. Small 16(17), 1905853 (2020). https://doi.org/10.1002/smLl.201905853
- J. Wang, J. Liu, R.T. Subramaniam, D. Zhang, Z. Li et al., Construction of WSSe2/C anode with enlarged layer spacing for efficient Na+ storage by anion synergistic strategy. J. Power. Sources 614, 234991 (2024). https://doi.org/10.1016/j.jpowsour.2024.234991
- S. Huang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Achieving ultrahigh-rate and low-temperature sodium storage of FePS3 via in situ construction of graphitized porous N-doped carbon. ACS Appl. Mater. Interfaces 14(37), 42048–42056 (2022). https://doi.org/10.1021/acsami.2c10953
- W. Brehm, A.L. Santhosha, Z. Zhang, C. Neumann, A. Turchanin et al., Copper thiophosphate (Cu3PS4) as electrode for sodium-ion batteries with ether electrolyte. Adv. Funct. Mater. 30(19), 1910583 (2020). https://doi.org/10.1002/adfm.201910583
- L. Cao, S. Fang, B. Xu, B. Zhang, C. Wang et al., Enabling reversible reaction by uniform distribution of heterogeneous intermediates on defect-rich SnSSe/C layered heterostructure for ultralong-cycling sodium storage. Small 18(26), 2202134 (2022). https://doi.org/10.1002/smLl.202202134
- Y.X. Chen, Y.H. Lin, Y.F. Yuan, W. Lv, M. Zhu et al., Ternary CoPSe in situ grown in cubic hollow carbon nanobox achieves high-rate and long-life lithium/sodium storage. Mater. Res. Bull. 167, 112437 (2023). https://doi.org/10.1016/j.materresbull.2023.112437
- K. Chen, G. Li, Z. Hu, Y. Wang, D. Lan et al., Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries. Chem. Eng. J. 435, 135149 (2022). https://doi.org/10.1016/j.cej.2022.135149
- N. Zhang, X. Li, T. Hou, J. Guo, A. Fan et al., MnS hollow microspheres combined with carbon nanotubes for enhanced performance sodium-ion battery anode. Chin. Chem. Lett. 31(5), 1221–1225 (2020). https://doi.org/10.1016/j.cclet.2019.09.050
- G. Li, K. Chen, Y. Wang, Z. Wang, X. Chen et al., Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N, S-co-doped carbon rolls. Nanoscale 12(15), 8493–8501 (2020). https://doi.org/10.1039/D0NR00626B
- J.-S. Park, A. Lee, G.D. Park, Y.C. Kang, Synthesis of MnSe@C yolk-shell nanospheres via a water vapor-assisted strategy for use as anode in sodium-ion batteries. Int. J. Energy Res. 46(3), 2500–2511 (2022). https://doi.org/10.1002/er.7323
- L. Hu, L. He, X. Wang, C. Shang, G. Zhou, MnSe embedded in carbon nanofibers as advanced anode material for sodium ion batteries. Nanotechnology 31(33), 335402 (2020). https://doi.org/10.1088/1361-6528/ab8e78
- S. Chong, T. Li, S. Qiao, Y.-C. Yang, Z. Liu et al., Boosting manganese selenide anode for superior sodium-ion storage via triggering α → β phase transition. ACS Nano 18(4), 3801–3813 (2024). https://doi.org/10.1021/acsnano.3c12215
- N.-J. Song, Y. Wang, C. Ma, Q. Zhang, Y. Zhao et al., Cage-like MnSe@PPyC/rGO as superior dual anode materials in Li/Na-ions storage. J. Alloys Compd. 927, 167002 (2022). https://doi.org/10.1016/j.jallcom.2022.167002
- M. Yousaf, Z. Wang, Y. Wang, Y. Chen, U. Ali et al., Core–shell FeSe2/C nanostructures embedded in a carbon framework as a free standing anode for a sodium ion battery. Small 16(47), 2002200 (2020). https://doi.org/10.1002/smLl.202002200
- B.-C. Chen, X. Lu, H.-Y. Zhong, P.-W. Huang, Y.-N. Wu et al., Constructing FePSe3–FeSe2 heterojunctions uniformly in a Ketjen black carbon matrix for superior potassium ion batteries. J. Mater. Chem. A 10(48), 25671–25682 (2022). https://doi.org/10.1039/d2ta07426e
- L. Hu, C. Liu, F. Zhang, H. Wang, B. Wang, Vacancy-defect ternary topological insulators Bi2Se2Te encapsulated in mesoporous carbon spheres for high performance sodium ion batteries and hybrid capacitors. Small 20(33), 2311079 (2024). https://doi.org/10.1002/smLl.202311079
- X. Ren, Y. Zhao, Q. Li, F. Cheng, W. Wen et al., A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. J. Mater. Chem. A 8(23), 11598–11606 (2020). https://doi.org/10.1039/d0ta04349d
- L. Zhang, H. Zhao, L. Dai, F. Yao, Y. Huang et al., Sacrificial template synthesis of two-dimensional few-layer MoSe2 coupled with nitrogen-doped carbon sheets for high-performance sodium ion hybrid capacitors. ACS Appl. Energy Mater. 4(12), 14735–14745 (2021). https://doi.org/10.1021/acsaem.1c03414
- H. Zhang, B. Liu, Z. Lu, J. Hu, J. Xie et al., Sulfur-bridged bonds heightened Na-storage properties in MnS nanocubes encapsulated by S-doped carbon matrix synthesized via solvent-free tactics for high-performance hybrid sodium ion capacitors. Small 19(16), 2207214 (2023). https://doi.org/10.1002/smLl.202207214
- S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, A nonpresodiate sodium-ion capacitor with high performance. Small 14(50), e1804035 (2018). https://doi.org/10.1002/smLl.201804035
- J. Qian, Y.S. Chui, G. Li, M. Lin, C.M. Luk et al., Kinetically controlled redox behaviors of K0.3MnO2 electrodes for high performance sodium-ion batteries. J. Mater. Chem. A 6(23), 10803–10812 (2018). https://doi.org/10.1039/c8ta03543a
References
J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu et al., High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater. 6(5), e12450 (2023). https://doi.org/10.1002/eem2.12450
F. Hartmann, M. Etter, G. Cibin, L. Liers, H. Terraschke et al., Superior sodium storage properties in the anode material NiCr2S4 for sodium-ion batteries: an X-ray diffraction, pair distribution function, and X-ray absorption study reveals a conversion mechanism via nickel extrusion. Adv. Mater. 33(44), 2101576 (2021). https://doi.org/10.1002/adma.202101576
R. Shao, Z. Sun, L. Wang, J. Pan, L. Yi et al., Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a comparison with lithium-ion batteries. Angew. Chem. Int. Ed. 63(11), e202320183 (2024). https://doi.org/10.1002/anie.202320183
T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad et al., Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549
F. Wang, Z. Jiang, Y. Zhang, Y. Zhang, J. Li et al., Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon. eScience 4(3), 100181 (2024). https://doi.org/10.1016/j.esci.2023.100181
D.T. Pham, T.T. Vu, S. Kim, B. Sambandam, V. Mathew et al., A versatile pyramidal hauerite anode in congeniality diglyme-based electrolytes for boosting performance of Li- and Na-ion batteries. Adv. Energy Mater. 9(37), 1900710 (2019). https://doi.org/10.1002/aenm.201900710
S. Li, J. Chen, J. Xiong, X. Gong, J. Ciou et al., Encapsulation of MnS nanocrystals into N, S-co-doped carbon as anode material for full cell sodium-ion capacitors. Nano-Micro Lett. 12(1), 34 (2020). https://doi.org/10.1007/s40820-020-0367-9
Y. Ma, Y. Ma, G.-T. Kim, T. Diemant, R.J. Behm et al., Superior lithium storage capacity of α-MnS nanops embedded in S-doped carbonaceous mesoporous frameworks. Adv. Energy Mater. 9(43), 1902077 (2019). https://doi.org/10.1002/aenm.201902077
D.-H. Liu, W.-H. Li, Y.-P. Zheng, Z. Cui, X. Yan et al., In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 30(21), e1706317 (2018). https://doi.org/10.1002/adma.201706317
W. Zhao, X. Ma, L. Gao, X. Wang, Y. Luo et al., Hierarchical architecture engineering of branch-leaf-shaped cobalt phosphosulfide quantum dots: enabling multi-dimensional ion-transport channels for high-efficiency sodium storage. Adv. Mater. 36(4), 2305190 (2024). https://doi.org/10.1002/adma.202305190
Y. Zhou, M. Zhang, Q. Wang, J. Yang, X. Luo et al., Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 13(3), 691–700 (2020). https://doi.org/10.1007/s12274-020-2677-0
M. Han, J. Liu, C. Deng, J. Guo, Y. Mu et al., Yolk-shell structure and spin-polarized surface capacitance enable FeS stable and fast ion transport in sodium-ion batteries. Adv. Energy Mater. 14(22), 2400246 (2024). https://doi.org/10.1002/aenm.202400246
Z. Li, G. Zhou, S. Li, H. Liu, L. Wang et al., Unlocking cycling longevity in micro-sized conversion-type FeS2 cathodes. Joule 7(11), 2609–2621 (2023). https://doi.org/10.1016/j.joule.2023.10.003
R. Hu, H. Zhao, J. Zhang, Q. Liang, Y. Wang et al., Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion–sulfurization process for high-capacity sodium-ion batteries. Nanoscale 11(1), 178–184 (2019). https://doi.org/10.1039/C8NR06675B
W. Huang, H. Sun, H. Shangguan, X. Cao, X. Xiao et al., Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale 10(16), 7851–7859 (2018). https://doi.org/10.1039/c8nr00034d
F. Chen, D. Shi, M. Yang, H. Jiang, Y. Shao et al., Novel designed MnS–MoS2 heterostructure for fast and stable Li/Na storage: insights into the advanced mechanism attributed to phase engineering. Adv. Funct. Mater. 31(6), 2007132 (2021). https://doi.org/10.1002/adfm.202007132
R. Liu, L. Yu, X. He, H. Liu, X. Ma et al., Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability. eScience 3(4), 100138 (2023). https://doi.org/10.1016/j.esci.2023.100138
J. Lv, D. Bai, L. Yang, Y. Guo, H. Yan et al., Bimetallic sulfide nanops confined by dual-carbon nanostructures as anodes for lithium-/ sodium-ion batteries. Chem. Commun. 54(64), 8909–8912 (2018). https://doi.org/10.1039/C8CC04318C
H. Lei, H. Wang, B. Cheng, F. Zhang, X. Liu et al., Anion-vacancy modified WSSe nanosheets on 3D cross-networked porous carbon skeleton for non-aqueous sodium-based dual-ion storage. Small 19(10), 2206340 (2023). https://doi.org/10.1002/smLl.202206340
Y. Liu, X. Hu, J. Li, G. Zhong, J. Yuan et al., Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 13(1), 663 (2022). https://doi.org/10.1038/s41467-022-28176-0
Z. Tian, W. Sun, J. Yu, J. Yuan, J. Chen et al., Vacancy-rich ternary iron phosphoselenide multicavity nanorods: a highly reversible and fast anode for sodium-ion batteries. Adv. Funct. Mater. 34(39), 2404320 (2024). https://doi.org/10.1002/adfm.202404320
S. Xing, J. Yang, M. Muska, H. Li, Q. Yang, Rock-salt MnS0.5Se0.5 nanocubes assembled on N-doped graphene forming van der waals heterostructured hybrids as high-performance anode for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 13(19), 22608–22620 (2021). https://doi.org/10.1021/acsami.1c04776
B. Haruna, L. Wang, X. Hu, G. Luo, M.A. Muhammad et al., Se-rich functionalized FeSx hollow nanospheres for accelerated and long-lasting sodium storage. Adv. Funct. Mater. 35(4), 2414246 (2025). https://doi.org/10.1002/adfm.202414246
B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31(31), 2101066 (2021). https://doi.org/10.1002/adfm.202101066
Y. Huang, Z. Wang, M. Guan, F. Wu, R. Chen, Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Adv. Mater. 32(40), e2003534 (2020). https://doi.org/10.1002/adma.202003534
T. He, W. Zhao, J. Hu, C. Deng, D. Yan et al., Unveiling the double-edged behavior of controlled selenium substitution in cobalt sulfide for balanced Na-storage capacity and rate capability. Adv. Funct. Mater. 34(8), 2310256 (2024). https://doi.org/10.1002/adfm.202310256
X. Hu, M. Qiu, Y. Liu, J. Yuan, J. Chen et al., Interface and structure engineering of tin-based chalcogenide anodes for durable and fast-charging sodium ion batteries. Adv. Energy Mater. 12(47), 2202318 (2022). https://doi.org/10.1002/aenm.202202318
J. Zhang, Y. Wang, M. Yu, J. Ni, L. Li, Understanding the role of topotactic anion exchange in the robust Cu ion storage of CuS1–xSex. ACS Energy Lett. 7(5), 1835–1841 (2022). https://doi.org/10.1021/acsenergylett.2c00766
X. Wang, D. Chen, Z. Yang, X. Zhang, C. Wang et al., Novel metal chalcogenide SnSSe as a high-capacity anode for sodium-ion batteries. Adv. Mater. 28(39), 8645–8650 (2016). https://doi.org/10.1002/adma.201603219
X. Wu, M. Caol, H. Lü, X. He, C. Hu, Microemulsion-mediated solvothermal synthesis and morphological evolution of MnCO3 nanocrystals. J. Nanosci. Nanotechnol. 6(7), 2123–2128 (2006). https://doi.org/10.1166/jnn.2006.371
J. Zhu, P. Wei, Q. Zeng, G. Wang, K. Wu et al., MnS@N, S Co-doped carbon core/shell nanocubes: sulfur-bridged bonds enhanced Na-storage properties revealed by in situ Raman spectroscopy and transmission electron microscopy. Small 16(45), 2003001 (2020). https://doi.org/10.1002/smLl.202003001
C. Guo, R. Zhou, X. Liu, R. Tang, W. Xi et al., Activating the MnS0.5Se0.5 microspheres as high-performance cathode materials for aqueous zinc-ion batteries: insight into in situ electrooxidation behavior and energy storage mechanisms. Small 20(15), 2306237 (2024). https://doi.org/10.1002/smLl.202306237
K.Y. Yasoda, M. Afshan, S.C. Caroline, E.M. Harini, K. Ghosh et al., Polyaniline with manganese based mixed chalcogenides (MnSSe-HT-PANI) heterostructure for the development of high-performance flexible supercapacitor. Electrochim. Acta 480, 143879 (2024). https://doi.org/10.1016/j.electacta.2024.143879
A. Zhang, R. Zhao, Y. Wang, J. Yang, C. Wu et al., Regulating the electronic structure of manganese-based materials to optimize the performance of zinc-ion batteries. Energy Environ. Sci. 16(8), 3240–3301 (2023). https://doi.org/10.1039/D3EE01344H
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse et al., First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1), 253–305 (2014). https://doi.org/10.1103/revmodphys.86.253
D. Lan, Y. Zhao, Y. Liu, N. Zhu, J. Cui, Self-assembled nano-MnS@N, P dual-doped lignite based carbon as high-performance sodium-ion batteries anode. J. Energy Storage 90, 111827 (2024). https://doi.org/10.1016/j.est.2024.111827
X. Xu, S. Ji, M. Gu, J. Liu, In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 7(37), 20957–20964 (2015). https://doi.org/10.1021/acsami.5b06590
T. Wang, L. Yin, R. Zhao, C. Xia, X. Zhao et al., First-principles study of monolayer SnS2(1–x)Se2x alloys as anode materials for lithium ion batteries. Appl. Surf. Sci. 457, 256–263 (2018). https://doi.org/10.1016/j.apsusc.2018.06.030
Y. Xiao, J.-Y. Hwang, I. Belharouak, Y.-K. Sun, Superior Li/Na-storage capability of a carbon-free hierarchical CoSx hollow nanostructure. Nano Energy 32, 320–328 (2017). https://doi.org/10.1016/j.nanoen.2016.12.053
T. Li, Y. Wang, L. Yuan, Q. Zhou, S. Qiao et al., An α-MnSe nanorod as anode for superior potassium-ion storage via synergistic effects of physical encapsulation and chemical bonding. Chem. Eng. J. 446, 137152 (2022). https://doi.org/10.1016/j.cej.2022.137152
Y. Chu, L. Guo, B. Xi, Z. Feng, F. Wu et al., Embedding MnO@Mn3O4 nanops in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv. Mater. 30(6), 1704244 (2018). https://doi.org/10.1002/adma.201704244
C. An, Y. Yuan, B. Zhang, L. Tang, B. Xiao et al., Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 9(18), 1900356 (2019). https://doi.org/10.1002/aenm.201900356
W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang et al., High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 31(8), 1806664 (2019). https://doi.org/10.1002/adma.201806664
P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 28(30), 1801765 (2018). https://doi.org/10.1002/adfm.201801765
Y. Xiao, Y. Miao, S. Hu, F. Gong, Q. Yu et al., Structural stability boosted in 3D carbon-free iron selenide through engineering heterointerfaces with Se–P bonds for appealing Na+-storage. Adv. Funct. Mater. 33(5), 2210042 (2023). https://doi.org/10.1002/adfm.202210042
D.-H. Liu, W.-H. Li, H.-J. Liang, H.-Y. Lü, J.-Z. Guo et al., Coaxial α-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. J. Mater. Chem. A 6(32), 15797–15806 (2018). https://doi.org/10.1039/C8TA03967D
S. Cao, Q. Liu, H. Chen, H. Zhu, Y. Liu, A bimetallic induced enhanced 3D electron transport network supported by micro constrain area of balls-in-ball structure used for high performance sodium storage. Chem. Eng. J. 470, 144277 (2023). https://doi.org/10.1016/j.cej.2023.144277
W. Sun, X. Tang, Q. Yang, Y. Xu, F. Wu et al., Coordination-induced interlinked covalent- and metal-organic-framework hybrids for enhanced lithium storage. Adv. Mater. 31(37), e1903176 (2019). https://doi.org/10.1002/adma.201903176
S. Xing, J. Yang, C. Wang, J. Zhou, J. Zhang et al., Fabrication of van der waals heterostructured FePSe3/carbon hybrid nanosheets for sodium storage with high performance. ACS Appl. Mater. Interfaces 12(49), 54732–54741 (2020). https://doi.org/10.1021/acsami.0c16396
Y. Sang, L. Wang, X. Cao, G. Ding, Y. Ding et al., Emerging 2D-Layered MnPS3/rGO composite as a superior anode for sodium-ion batteries. J. Alloys Compd. 831, 154775 (2020). https://doi.org/10.1016/j.jallcom.2020.154775
T. Zheng, P. Hu, Z. Wang, T. Guo, 2D amorphous iron selenide sulfide nanosheets for stable and rapid sodium-ion storage. Adv. Mater. 35(48), e2306577 (2023). https://doi.org/10.1002/adma.202306577
C. Wang, B. Zhang, H. Xia, L. Cao, B. Luo et al., Composition and architecture design of double-shelled Co0.85Se1-xSx@Carbon/graphene hollow polyhedron with superior alkali (Li, Na, K)-ion storage. Small 16(17), 1905853 (2020). https://doi.org/10.1002/smLl.201905853
J. Wang, J. Liu, R.T. Subramaniam, D. Zhang, Z. Li et al., Construction of WSSe2/C anode with enlarged layer spacing for efficient Na+ storage by anion synergistic strategy. J. Power. Sources 614, 234991 (2024). https://doi.org/10.1016/j.jpowsour.2024.234991
S. Huang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Achieving ultrahigh-rate and low-temperature sodium storage of FePS3 via in situ construction of graphitized porous N-doped carbon. ACS Appl. Mater. Interfaces 14(37), 42048–42056 (2022). https://doi.org/10.1021/acsami.2c10953
W. Brehm, A.L. Santhosha, Z. Zhang, C. Neumann, A. Turchanin et al., Copper thiophosphate (Cu3PS4) as electrode for sodium-ion batteries with ether electrolyte. Adv. Funct. Mater. 30(19), 1910583 (2020). https://doi.org/10.1002/adfm.201910583
L. Cao, S. Fang, B. Xu, B. Zhang, C. Wang et al., Enabling reversible reaction by uniform distribution of heterogeneous intermediates on defect-rich SnSSe/C layered heterostructure for ultralong-cycling sodium storage. Small 18(26), 2202134 (2022). https://doi.org/10.1002/smLl.202202134
Y.X. Chen, Y.H. Lin, Y.F. Yuan, W. Lv, M. Zhu et al., Ternary CoPSe in situ grown in cubic hollow carbon nanobox achieves high-rate and long-life lithium/sodium storage. Mater. Res. Bull. 167, 112437 (2023). https://doi.org/10.1016/j.materresbull.2023.112437
K. Chen, G. Li, Z. Hu, Y. Wang, D. Lan et al., Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries. Chem. Eng. J. 435, 135149 (2022). https://doi.org/10.1016/j.cej.2022.135149
N. Zhang, X. Li, T. Hou, J. Guo, A. Fan et al., MnS hollow microspheres combined with carbon nanotubes for enhanced performance sodium-ion battery anode. Chin. Chem. Lett. 31(5), 1221–1225 (2020). https://doi.org/10.1016/j.cclet.2019.09.050
G. Li, K. Chen, Y. Wang, Z. Wang, X. Chen et al., Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N, S-co-doped carbon rolls. Nanoscale 12(15), 8493–8501 (2020). https://doi.org/10.1039/D0NR00626B
J.-S. Park, A. Lee, G.D. Park, Y.C. Kang, Synthesis of MnSe@C yolk-shell nanospheres via a water vapor-assisted strategy for use as anode in sodium-ion batteries. Int. J. Energy Res. 46(3), 2500–2511 (2022). https://doi.org/10.1002/er.7323
L. Hu, L. He, X. Wang, C. Shang, G. Zhou, MnSe embedded in carbon nanofibers as advanced anode material for sodium ion batteries. Nanotechnology 31(33), 335402 (2020). https://doi.org/10.1088/1361-6528/ab8e78
S. Chong, T. Li, S. Qiao, Y.-C. Yang, Z. Liu et al., Boosting manganese selenide anode for superior sodium-ion storage via triggering α → β phase transition. ACS Nano 18(4), 3801–3813 (2024). https://doi.org/10.1021/acsnano.3c12215
N.-J. Song, Y. Wang, C. Ma, Q. Zhang, Y. Zhao et al., Cage-like MnSe@PPyC/rGO as superior dual anode materials in Li/Na-ions storage. J. Alloys Compd. 927, 167002 (2022). https://doi.org/10.1016/j.jallcom.2022.167002
M. Yousaf, Z. Wang, Y. Wang, Y. Chen, U. Ali et al., Core–shell FeSe2/C nanostructures embedded in a carbon framework as a free standing anode for a sodium ion battery. Small 16(47), 2002200 (2020). https://doi.org/10.1002/smLl.202002200
B.-C. Chen, X. Lu, H.-Y. Zhong, P.-W. Huang, Y.-N. Wu et al., Constructing FePSe3–FeSe2 heterojunctions uniformly in a Ketjen black carbon matrix for superior potassium ion batteries. J. Mater. Chem. A 10(48), 25671–25682 (2022). https://doi.org/10.1039/d2ta07426e
L. Hu, C. Liu, F. Zhang, H. Wang, B. Wang, Vacancy-defect ternary topological insulators Bi2Se2Te encapsulated in mesoporous carbon spheres for high performance sodium ion batteries and hybrid capacitors. Small 20(33), 2311079 (2024). https://doi.org/10.1002/smLl.202311079
X. Ren, Y. Zhao, Q. Li, F. Cheng, W. Wen et al., A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. J. Mater. Chem. A 8(23), 11598–11606 (2020). https://doi.org/10.1039/d0ta04349d
L. Zhang, H. Zhao, L. Dai, F. Yao, Y. Huang et al., Sacrificial template synthesis of two-dimensional few-layer MoSe2 coupled with nitrogen-doped carbon sheets for high-performance sodium ion hybrid capacitors. ACS Appl. Energy Mater. 4(12), 14735–14745 (2021). https://doi.org/10.1021/acsaem.1c03414
H. Zhang, B. Liu, Z. Lu, J. Hu, J. Xie et al., Sulfur-bridged bonds heightened Na-storage properties in MnS nanocubes encapsulated by S-doped carbon matrix synthesized via solvent-free tactics for high-performance hybrid sodium ion capacitors. Small 19(16), 2207214 (2023). https://doi.org/10.1002/smLl.202207214
S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, A nonpresodiate sodium-ion capacitor with high performance. Small 14(50), e1804035 (2018). https://doi.org/10.1002/smLl.201804035
J. Qian, Y.S. Chui, G. Li, M. Lin, C.M. Luk et al., Kinetically controlled redox behaviors of K0.3MnO2 electrodes for high performance sodium-ion batteries. J. Mater. Chem. A 6(23), 10803–10812 (2018). https://doi.org/10.1039/c8ta03543a