Innovative Strategies to Overcome Stability Challenges of Single-Atom Nanozymes
Corresponding Author: Ziwei Jing
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 100
Abstract
Single-atom nanozymes (SAzymes) exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metal-carrier interactions, which have attracted significant attention in the biomedical field. However, stability issues may impede the clinical translation of SAzymes. This review provides a comprehensive overview of the applications of SAzymes in various biomedical fields, including disease diagnosis (e.g., biosensors and diagnostic imaging), antitumor therapy (e.g., photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy), antimicrobial therapy, and anti-oxidative stress therapy. More importantly, the existing challenges of SAzymes are discussed, such as metal atom clustering and active site loss, ligand bond breakage at high temperature, insufficient environment tolerance, biosecurity risks, and limited catalytic long-term stability. Finally, several innovative strategies to address these stability concerns are proposed—synthesis process optimization (space-limited strategy, coordination site design, bimetallic synergistic strategy, defect engineering strategy, atom stripping-capture), surface modification, and dynamic responsive design—that collectively pave the way for robust, clinically viable SAzymes.
Highlights:
1 This review uniquely provides an in-depth focus on the stability issues of single-atom nanozymes (SAzymes), covering multiple aspects such as metal atom clustering and active site loss, ligand bond breakage at high temperature, insufficient environment tolerance, biosecurity risks, and limited catalytic long-term stability.
2 This review integrates and systematically discusses a wide range of potential strategies to overcome stability issues, including synthesis process optimization (space-limited strategy, coordination site design, bimetallic synergistic strategy, defect engineering strategy, atom stripping-capture), surface modification, and dynamic responsive design.
3 To transform SAzymes from “star materials” of the laboratory into precise clinical tools for medicine, the authors propose the four-dimensional roadmap: structure-predictable, activity-tunable, biocompatible, and scalable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
- H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
- H. Dong, G. Wang, K. Feng, X. Wu, Y. Fan et al., Reference material of Prussian blue nanozymes for their peroxidase-like activity. Analyst 147(24), 5633–5642 (2022). https://doi.org/10.1039/D2AN01401G
- H. Dong, W. Du, J. Dong, R. Che, F. Kong et al., Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 13(1), 5365 (2022). https://doi.org/10.1038/s41467-022-33098-y
- M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
- L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu et al., When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59(7), 2565–2576 (2020). https://doi.org/10.1002/anie.201905645
- Y. Sun, C. Wang, H. Li, K. Wang, Q. Bai et al., Sp carbon disrupting axial symmetry of local electric field for biomimetic construction of three-dimensional geometric and electronic structure in nanozyme for sensing and microplastic degradation. Angew. Chem. Int. Ed. 137(6), e202418707 (2025). https://doi.org/10.1002/ange.202418707
- L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
- R. Zhang, K. Fan, X. Yan, Nanozymes: created by learning from nature. Sci. China Life Sci. 63(8), 1183–1200 (2020). https://doi.org/10.1007/s11427-019-1570-7
- S. Wei, M. Sun, J. Huang, Z. Chen, X. Wang et al., Axial chlorination engineering of single-atom nanozyme: Fe-N4Cl catalytic sites for efficient peroxidase-mimicking. J. Am. Chem. Soc. 146(48), 33239–33248 (2024). https://doi.org/10.1021/jacs.4c13335
- S. Zhang, Y. Li, S. Sun, L. Liu, X. Mu et al., Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun. 13(1), 4744 (2022). https://doi.org/10.1038/s41467-022-32411-z
- J. Shen, J. Chen, Y. Qian, X. Wang, D. Wang et al., Atomic engineering of single-atom nanozymes for biomedical applications. Adv. Mater. 36(21), 2313406 (2024). https://doi.org/10.1002/adma.202313406
- B. Jiang, Z. Guo, M. Liang, Recent progress in single-atom nanozymes research. Nano Res. 16(2), 1878–1889 (2023). https://doi.org/10.1007/s12274-022-4856-7
- L. Shen, D. Ye, H. Zhao, J. Zhang, Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 93(3), 1221–1231 (2021). https://doi.org/10.1021/acs.analchem.0c04084
- L. Yang, S. Dong, S. Gai, D. Yang, H. Ding et al., Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 16(1), 28 (2023). https://doi.org/10.1007/s40820-023-01224-0
- Y. Zhu, Y. Liao, J. Zou, J. Cheng, Y. Pan et al., Engineering single-atom nanozymes for catalytic biomedical applications. Small 19(30), 2300750 (2023). https://doi.org/10.1002/smll.202300750
- J. Abbenseth, J.M. Goicoechea, Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. Chem. Sci. 11(36), 9728–9740 (2020). https://doi.org/10.1039/d0sc03819a
- A.K. Datye, M. Votsmeier, Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 20(8), 1049–1059 (2021). https://doi.org/10.1038/s41563-020-00805-3
- V. Krishna Bayineni, V.R. Naira, R.-K. Kadeppagari, Biomedical applications of nanozymes: disease diagnosis and therapy. In: Handbook of Consumer Nanoproducts, pp. 1–13. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6453-6_91-1
- Q. Chen, S. Li, Y. Liu, X. Zhang, Y. Tang et al., Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem. 305, 127511 (2020). https://doi.org/10.1016/j.snb.2019.127511
- C. Pan, F. Wu, J. Mao, W. Wu, G. Zhao et al., Highly stable and selective sensing of hydrogen sulfide in living mouse brain with NiN4 single-atom catalyst-based galvanic redox potentiometry. J. Am. Chem. Soc. 144(32), 14678–14686 (2022). https://doi.org/10.1021/jacs.2c04695
- L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu et al., Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 91(18), 11994–11999 (2019). https://doi.org/10.1021/acs.analchem.9b02901
- X. Xie, D.P. Wang, C. Guo, Y. Liu, Q. Rao et al., Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 93(11), 4916–4923 (2021). https://doi.org/10.1021/acs.analchem.0c05191
- X. Xie, Y. Wang, X. Zhou, J. Chen, M. Wang et al., Fe–N–C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst 146(3), 896–903 (2021). https://doi.org/10.1039/D0AN01846E
- M. Liu, X. Li, S. Zhou, D. Men, Y. Duan et al., Ultrasensitive detection of mycotoxins using a novel single-atom, CRISPR/Cas12a-based nanozymatic colorimetric biosensor. Chem. Eng. J. 497, 154418 (2024). https://doi.org/10.1016/j.cej.2024.154418
- X. Zhang, G. Li, G. Chen, D. Wu, X. Zhou et al., Single-atom nanozymes: a rising star for biosensing and biomedicine. Coord. Chem. Rev. 418, 213376 (2020). https://doi.org/10.1016/j.ccr.2020.213376
- D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W.Q. Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11(1), 357 (2020). https://doi.org/10.1038/s41467-019-14199-7
- M. Chang, Z. Hou, M. Wang, D. Wen, C. Li et al., Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem. Int. Ed. 61(50), e202209245 (2022). https://doi.org/10.1002/anie.202209245
- X. Wang, X. Ren, J. Yang, Z. Zhao, X. Zhang et al., Mn-single-atom nano-multizyme enabled NIR-II photoacoustically monitored, photothermally enhanced ROS storm for combined cancer therapy. Biomater. Res. 27(1), 125 (2023). https://doi.org/10.1186/s40824-023-00464-w
- S. Liu, Y. Jiang, P. Liu, Y. Yi, D. Hou et al., Single-atom gadolinium nano-contrast agents with high stability for tumor T(1) magnetic resonance imaging. ACS Nano 17(9), 8053–8063 (2023). https://doi.org/10.1021/acsnano.2c09664
- K.E. de Visser, J.A. Joyce, The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41(3), 374–403 (2023). https://doi.org/10.1016/j.ccell.2023.02.016
- R. Tian, Y. Li, Z. Xu, J. Xu, J. Liu, Current advances of atomically dispersed metal-centered nanozymes for tumor diagnosis and therapy. Int. J. Mol. Sci. 24(21), 15712 (2023). https://doi.org/10.3390/ijms242115712
- W. He, J. Wu, J. Liu, J. Li, Single-atom nanozymes for catalytic therapy: recent advances and challenges. Adv. Funct. Mater. 34(16), 2312116 (2024). https://doi.org/10.1002/adfm.202312116
- E.M. Hamed, V. Rai, S.F.Y. Li, Single-atom nanozymes with peroxidase-like activity: a review. Chemosphere 346, 140557 (2024). https://doi.org/10.1016/j.chemosphere.2023.140557
- Y. Liu, M. Yao, W. Han, H. Zhang, S. Zhang, Construction of a single-atom nanozyme for enhanced chemodynamic therapy and chemotherapy. Chem. 27(53), 13418–13425 (2021). https://doi.org/10.1002/chem.202102016
- W. Qiao, J. Chen, H. Zhou, C. Hu, S. Dalangood et al., A single-atom manganese nanozyme Mn-N/C promotes anti-tumor immune response via eliciting type i interferon signaling. Adv. Sci. 11(14), 2305979 (2024). https://doi.org/10.1002/advs.202305979
- Y. Yin, X. Ge, J. Ouyang, N. Na, Tumor-activated in situ synthesis of single-atom catalysts for O2-independent photodynamic therapy based on water-splitting. Nat. Commun. 15(1), 2954 (2024). https://doi.org/10.1038/s41467-024-46987-1
- W. Li, H. Li, G. Jiang, L. Yang, H. Nie et al., Creating single atomic coordination for hypoxia-resistant pyroptosis nano-inducer to boost anti-tumor immunotherapy. Adv. Mater. 37(9), 2414697 (2025). https://doi.org/10.1002/adma.202414697
- J. Zhu, H. Wang, K. Li, X. Yuan, W. Hong, Black phosphorus nanosheets-loaded single-atom gold nanoenzymes for enhanced photodynamic therapy of hepatocellular carcinoma. Int. J. Nanomed. 19, 12583–12592 (2024). https://doi.org/10.2147/IJN.S414938
- G. Feng, H. Huang, M. Zhang, Z. Wu, D. Sun et al., Single atom iron-doped graphic-phase C3N4 semiconductor nanosheets for augmented sonodynamic melanoma therapy synergy with endowed chemodynamic effect. Adv. Sci. 10(23), 2302579 (2023). https://doi.org/10.1002/advs.202302579
- B. Geng, J. Hu, X. He, Z. Zhang, J. Cai et al., Single atom catalysts remodel tumor microenvironment for augmented sonodynamic immunotherapy. Adv. Mater. 36(25), 2313670 (2024). https://doi.org/10.1002/adma.202313670
- D. Wen, J. Feng, R. Deng, K. Li, H. Zhang, Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer. Nat. Commun. 15(1), 9359 (2024). https://doi.org/10.1038/s41467-024-53488-8
- Y. Su, F. Wu, Q. Song, M. Wu, M. Mohammadniaei et al., Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 281, 121325 (2022). https://doi.org/10.1016/j.biomaterials.2021.121325
- M. Chang, Z. Hou, M. Wang, C. Yang, R. Wang et al., Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem. Int. Ed. 60(23), 12971–12979 (2021). https://doi.org/10.1002/anie.202101924
- J. Guo, M. Jin, Y. Huang, L. Yin, X. Li et al., Ce single atom with cascaded self-circulating enzyme-like activities and photothermal activities for cancer therapy. Small 21(11), 2410041 (2025). https://doi.org/10.1002/smll.202410041
- H. Lin, Y. Gao, L. Zhu, Y. Guo, L. Zhang et al., Rational design of single-atom nanozymes for combination cancer immunotherapy. Adv. Funct. Mater. 35(10), 2416563 (2025). https://doi.org/10.1002/adfm.202416563
- R. Niu, Y. Liu, B. Xu, R. Deng, S. Zhou et al., Programmed targeting pyruvate metabolism therapy amplified single-atom nanozyme-activated pyroptosis for immunotherapy. Adv. Mater. 36(24), e2312124 (2024). https://doi.org/10.1002/adma.202312124
- J. Cheng, L. Li, D. Jin, Y. Zhang, W. Yu et al., A non-metal single atom nanozyme for cutting off the energy and reducing power of tumors. Angew. Chem. Int. Ed. 63(16), e202319982 (2024). https://doi.org/10.1002/anie.202319982
- Z. Wang, R. Chen, W. Zhang, P. Sun, N. Zhang et al., Boosting tumor apoptosis and ferroptosis with multienzyme mimetic Au single-atom nanozymes engaged in cascade catalysis. Adv. Funct. Mater. 35(2), 2412767 (2025). https://doi.org/10.1002/adfm.202412767
- P. Muhammad, S. Hanif, J. Li, A. Guller, F.U. Rehman et al., Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 45, 101530 (2022). https://doi.org/10.1016/j.nantod.2022.101530
- X. Zhou, S. Feng, Q. Xu, Y. Li, J. Lan et al., Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater. 191, 1–28 (2025). https://doi.org/10.1016/j.actbio.2024.11.023
- X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17(11), 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
- J. Ouyang, Z. Tang, N. Farokhzad, N. Kong, N.Y. Kim et al., Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today 35, 100949 (2020). https://doi.org/10.1016/j.nantod.2020.100949
- H. Zhang, M. Yang, Q. Wu, J. Xue, H. Liu, Engineering two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 64(12), e202424768 (2025). https://doi.org/10.1002/anie.202424768
- Z. Li, F. Liu, Y. Jiang, P. Ni, C. Zhang et al., Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 15(5), 4411–4420 (2022). https://doi.org/10.1007/s12274-021-4029-0
- M. Zhao, J.D. Schoenfeld, A.M. Egloff, G.J. Hanna, R.I. Haddad et al., T cell dynamics with neoadjuvant immunotherapy in head and neck cancer. Nat. Rev. Clin. Oncol. 22(2), 83–94 (2025). https://doi.org/10.1038/s41571-024-00969-w
- L. Sun, H. Liu, Y. Ye, Y. Lei, R. Islam et al., Smart nanops for cancer therapy. Signal Transduct. Target. Ther. 8(1), 418 (2023). https://doi.org/10.1038/s41392-023-01642-x
- Z. Gao, Z. Song, R. Guo, M. Zhang, J. Wu et al., Mn single-atom nanozyme functionalized 3D-printed bioceramic scaffolds for enhanced antibacterial activity and bone regeneration. Adv. Healthc. Mater. 13(13), 2303182 (2024). https://doi.org/10.1002/adhm.202303182
- K. Wang, M.-S. Yuan, P. Dai, J. Li, A. Tao et al., ZnFe layered double hydroxide nanosheets loaded with Cu single-atom nanozymes with multi-enzyme-like catalytic activities as an effective treatment for bacterial keratitis. Adv. Sci. 12(10), 2411999 (2025). https://doi.org/10.1002/advs.202411999
- Y. Zhai, S. Pei, X. Qin, L. Zhang, X. Liu et al., Ultralow dose iron-copper bimetallic single-atom nanozymes for efficient photothermal-chemodynamic antibacterial and wound healing. Adv. Healthc. Mater. 14(3), 2403920 (2025). https://doi.org/10.1002/adhm.202403920
- S. Chen, F. Huang, L. Mao, Z. Zhang, H. Lin et al., High Fe-loading single-atom catalyst boosts ROS production by density effect for efficient antibacterial therapy. Nano-Micro Lett. 17(1), 32 (2024). https://doi.org/10.1007/s40820-024-01522-1
- B. Li, Y. Bai, C. Yion, H. Wang, X. Su et al., Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano 17(8), 7511–7529 (2023). https://doi.org/10.1021/acsnano.2c12614
- Y. Jiang, H. Rong, Y. Wang, S. Liu, P. Xu et al., Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 16(7), 9752–9759 (2023). https://doi.org/10.1007/s12274-023-5588-z
- J. Xiang, X. Yang, M. Tan, J. Guo, Y. Ye et al., NIR-enhanced Pt single atom/g-C3N4 nanozymes as SOD/CAT mimics to rescue ATP energy crisis by regulating oxidative phosphorylation pathway for delaying osteoarthritis progression. Bioact. Mater. 36, 1–13 (2024). https://doi.org/10.1016/j.bioactmat.2024.02.018
- J. Yang, R. Zhang, H. Zhao, H. Qi, J. Li et al., Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2(4), 20210267 (2022). https://doi.org/10.1002/EXP.20210267
- D. Chu, M. Zhao, S. Rong, W. Jhe, X. Cai et al., Dual-atom nanozyme eye drops attenuate inflammation and break the vicious cycle in dry eye disease. Nano-Micro Lett. 16(1), 120 (2024). https://doi.org/10.1007/s40820-024-01322-7
- A.G. Kurian, R.K. Singh, V. Sagar, J.-H. Lee, H.-W. Kim, Nanozyme-engineered hydrogels for anti-inflammation and skin regeneration. Nano-Micro Lett. 16(1), 110 (2024). https://doi.org/10.1007/s40820-024-01323-6
- G. Wu, S. Li, L. Luo, Y. Li, W. Zhang et al., Exploring single-atom nanozymes toward environmental pollutants: monitoring and control. Nano-Micro Lett. 17(1), 238 (2025). https://doi.org/10.1007/s40820-025-01734-z
- G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16(1), 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
- X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- H. Liu, B. Yu, P. Yang, Y. Yang, Z. Deng et al., Axial O atom-modulated Fe(III)-N4 sites for enhanced cascade catalytic 1O2− induced tumor therapy. Adv. Sci. 11(33), 2307254 (2024). https://doi.org/10.1002/advs.202307254
- J. Wu, X. Zhu, Q. Li, Q. Fu, B. Wang et al., Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 15, 6174 (2024). https://doi.org/10.1038/s41467-024-50416-8
- Z. Lang, X. Wang, S. Jabeen, Y. Cheng, N. Liu et al., Destabilization of single-atom catalysts: characterization, mechanisms, and regeneration strategies. Adv. Mater. 37(9), 2418942 (2025). https://doi.org/10.1002/adma.202418942
- Y. Zhou, Q. Wang, X. Tian, L. Feng, Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanops for methanol electrolysis of hydrogen generation. Nano Res. 15(10), 8936–8945 (2022). https://doi.org/10.1007/s12274-022-4907-0
- V. Muravev, G. Spezzati, Y.-Q. Su, A. Parastaev, F.-K. Chiang et al., Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 4(6), 469–478 (2021). https://doi.org/10.1038/s41929-021-00621-1
- R. Zhong, C. Zhi, Y. Wu, Z. Liang, H. Tabassum et al., Atomic Fe-N4 sites on electrospun hierarchical porous carbon nanofibers as an efficient electrocatalyst for oxygen reduction reaction. Chin. Chem. Lett. 31(6), 1588–1592 (2020). https://doi.org/10.1016/j.cclet.2019.12.004
- Y. Chen, P. Wang, H. Hao, J. Hong, H. Li et al., Thermal atomization of platinum nanops into single atoms: an effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 143(44), 18643–18651 (2021). https://doi.org/10.1021/jacs.1c08581
- H. Xie, X. Xie, G. Hu, V. Prabhakaran, S. Saha et al., Ta–TiOx nanops as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 7(3), 281–289 (2022). https://doi.org/10.1038/s41560-022-00988-w
- N. Tagaras, H. Song, S. Sahar, W. Tong, Z. Mao et al., Safety landscape of therapeutic nanozymes and future research directions. Adv. Sci. 11(46), 2407816 (2024). https://doi.org/10.1002/advs.202407816
- H. Sun, L. Lv, Y. Bai, H. Yang, H. Zhou et al., Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int. J. Nanomed. 13, 8325–8338 (2018). https://doi.org/10.2147/ijn.s173063
- K. Wang, Q. Hong, C. Zhu, Y. Xu, W. Li et al., Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity. Nat. Commun. 15, 5705 (2024). https://doi.org/10.1038/s41467-024-50123-4
- F.D. Speck, M.T.Y. Paul, F. Ruiz-Zepeda, M. Gatalo, H. Kim et al., Atomistic insights into the stability of Pt single-atom electrocatalysts. J. Am. Chem. Soc. 142(36), 15496–15504 (2020). https://doi.org/10.1021/jacs.0c07138
- S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong et al., Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4(5), 407–417 (2021). https://doi.org/10.1038/s41929-021-00609-x
- X. Shi, Z. Wen, Q. Gu, L. Jiao, H.-L. Jiang et al., Metal-support frontier orbital interactions in single-atom catalysis. Nature 640(8059), 668–675 (2025). https://doi.org/10.1038/s41586-025-08747-z
- Y. Pan, C. Zhang, Z. Liu, C. Chen, Y. Li, Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter 2(1), 78–110 (2020). https://doi.org/10.1016/j.matt.2019.11.014
- J. Liu, Catalysis by supported single metal atoms. ACS Catal. 7(1), 34–59 (2017). https://doi.org/10.1021/acscatal.6b01534
- C. Peng, R. Pang, J. Li, E. Wang, Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 36(10), 2211724 (2024). https://doi.org/10.1002/adma.202211724
- Y. Liu, H. Zhao, Y. Zhao, Designing efficient single metal atom biocatalysts at the atomic structure level. Angew. Chem. Int. Ed. 63(13), e202315933 (2024). https://doi.org/10.1002/anie.202315933
- B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58(15), 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
- H. Dai, A. Han, X. Wang, P. Zhu, D. Wang et al., NIR-triggering cobalt single-atom enzyme switches off-to-on for boosting the interactive dynamic effects of multimodal phototherapy. Nat. Commun. 16(1), 2058 (2025). https://doi.org/10.1038/s41467-025-57188-9
- B. Xu, S. Li, L. Zheng, Y. Liu, A. Han et al., A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 34(15), 2107088 (2022). https://doi.org/10.1002/adma.202107088
- H. Liu, B. Yu, J. Shi, X. Peng, W. Zhou et al., Ultrahigh density copper (I) single atom enzymes for tumor self-cascade catalytic therapy. Chem. Eng. J. 480, 148273 (2024). https://doi.org/10.1016/j.cej.2023.148273
- J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin et al., Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc. 141(37), 14515–14519 (2019). https://doi.org/10.1021/jacs.9b06482
- W. Liu, E. Shi, H. Wu, Y. Liang, M. Chen et al., Spatially axial boron coordinated single-atom nanozymes with boosted multi-enzymatic performances for periodontitis treatment. Adv. Funct. Mater. 34(39), 2403386 (2024). https://doi.org/10.1002/adfm.202403386
- Q. Zhao, M. Zhang, Y. Gao, H. Dong, L. Zheng et al., Rearranging spin electrons by axial-ligand-induced orbital splitting to regulate enzymatic activity of single-atom nanozyme with destructive d−π conjugation. J. Am. Chem. Soc. 146(21), 14875–14888 (2024). https://doi.org/10.1021/jacs.4c04322
- D. Wang, J. Wang, X.J. Gao, H. Ding, M. Yang et al., Employing noble metal–porphyrins to engineer robust and highly active single-atom nanozymes for targeted catalytic therapy in nasopharyngeal carcinoma. Adv. Mater. 36(7), 2310033 (2024). https://doi.org/10.1002/adma.202310033
- L. Yin, S. Zhang, M. Sun, S. Wang, B. Huang et al., Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 35(28), 2302485 (2023). https://doi.org/10.1002/adma.202302485
- J. Wang, T. Liao, Z. Wei, J. Sun, J. Guo et al., Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 5(4), e2000988 (2021). https://doi.org/10.1002/smtd.202000988
- P. Li, Q. Guo, J. Zhang, R. Chen, S. Ding et al., How the microenvironment dominated by the distance effect to regulate the FeN4 site ORR activity and selectivity? Nano Res. 17(6), 5735–5741 (2024). https://doi.org/10.1007/s12274-024-6414-y
- Z. Chen, H. Niu, J. Ding, H. Liu, P.-H. Chen et al., Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 60(48), 25404–25410 (2021). https://doi.org/10.1002/anie.202110243
- L. Jiao, Y. Kang, Y. Chen, N. Wu, Y. Wu et al., Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today 40, 101261 (2021). https://doi.org/10.1016/j.nantod.2021.101261
- Q. Sun, M. Wu, N. Niu, L. Chen, S. Liu et al., Regulating second coordination shell of Ce atom site and reshaping of carrier enable single-atom nanozyme to efficiently express oxidase-like activity. Nano Lett. 24(26), 8071–8079 (2024). https://doi.org/10.1021/acs.nanolett.4c01846
- Y. Tang, Y. Han, J. Zhao, Y. Lv, C. Fan et al., A rational design of metal-organic framework nanozyme with high-performance copper active centers for alleviating chemical corneal burns. Nano-Micro Lett. 15, 112 (2023). https://doi.org/10.1007/s40820-023-01059-9
- R. Lang, X. Du, Y. Huang, X. Jiang, Q. Zhang et al., Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120(21), 11986–12043 (2020). https://doi.org/10.1021/acs.chemrev.0c00797
- Y. Chen, X. Zheng, J. Cai, G. Zhao, B. Zhang et al., Sulfur doping triggering enhanced Pt–N coordination in graphitic carbon nitride-supported Pt electrocatalysts toward efficient oxygen reduction reaction. ACS Catal. 12(12), 7406–7414 (2022). https://doi.org/10.1021/acscatal.2c00944
- W. Song, C. Xiao, J. Ding, Z. Huang, X. Yang et al., Review of carbon support coordination environments for single metal atom electrocatalysts (SACS). Adv. Mater. 36(1), 2301477 (2024). https://doi.org/10.1002/adma.202301477
- C.B. Ma, Y. Xu, L. Wu, Q. Wang, J.J. Zheng et al., Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem. Int. Ed. 61(25), e202116170 (2022). https://doi.org/10.1002/anie.202116170
- S. Ning, Z. Zhang, Y. Ren, Y. Hou, D. Li et al., A synergistic dual-atom sites nanozyme augments immunogenic cell death for efficient immunotherapy. Adv. Sci. 12(7), 2414734 (2025). https://doi.org/10.1002/advs.202414734
- Q. Ma, Y. Liao, Q. Zhao, R. Gan, Y. Ran et al., Triggering synergistic electronic effect via electron-directed transfer within PtNPs-Fe/NC oxygen reduction catalyst for zinc-air batteries. Small 21(14), 2500344 (2025). https://doi.org/10.1002/smll.202500344
- R. Lang, W. Xi, J.-C. Liu, Y.-T. Cui, T. Li et al., Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019). https://doi.org/10.1038/s41467-018-08136-3
- R. Zhang, B. Xue, Y. Tao, H. Zhao, Z. Zhang et al., Edge-site engineering of defective Fe–N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 34(39), 2205324 (2022). https://doi.org/10.1002/adma.202205324
- H.-X. Liu, Z. Gao, H. Yan, S.-Q. Li, W.-W. Wang et al., Ensemble of single-atom catalysis and defect engineering in Cu1/CeO2 nanozymes for tumor therapy. Sci. China Chem. 66(9), 2590–2599 (2023). https://doi.org/10.1007/s11426-023-1677-4
- J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
- S. Wei, A. Li, J.-C. Liu, Z. Li, W. Chen et al., Direct observation of noble metal nanops transforming to thermally stable single atoms. Nat. Nanotechnol. 13(9), 856–861 (2018). https://doi.org/10.1038/s41565-018-0197-9
- X. Mou, Q. Wu, Z. Zhang, Y. Liu, J. Zhang et al., Nanozymes for regenerative medicine. Small Methods 6(11), 2200997 (2022). https://doi.org/10.1002/smtd.202200997
- Y. Li, Z. Xu, L. Fan, Folic-acid-functionalized Fe3O4@C@Pt nanozyme for synergistic catalytic-photothermal tumor therapy. New J. Chem. 49(5), 1795–1801 (2025). https://doi.org/10.1039/d4nj04927f
- L. Huang, H. Pu, D.-W. Sun, Spatiotemporally guided single-atom bionanozyme for targeted antibiofilm treatment. Small 20(51), 2407747 (2024). https://doi.org/10.1002/smll.202407747
- D. Wang, L. Ji, Y. Li, M. Xu, H. Wang et al., Iron-silver-modified quantum dots act as efficient catalysts in anti-cancer multitherapy through controlled, ultrasound-induced oxidation. Nat. Nanotechnol. 20(8), 1098–1107 (2025). https://doi.org/10.1038/s41565-025-01943-y
- X. Wang, T. Liu, M. Chen, Q. Liang, J. Jiang et al., An erythrocyte-templated iron single-atom nanozyme for wound healing. Adv. Sci. 11(6), 2307844 (2024). https://doi.org/10.1002/advs.202307844
- N. Tao, S. Chen, S. Mahdinloo, Q. Zhang, T. Lan et al., A pH-responsive single-atom nanozyme for photothermal-augmented nanocatalytic tumor therapy. Nano Today 57, 102371 (2024). https://doi.org/10.1016/j.nantod.2024.102371
- Y. Tong, Q. Liu, H. Fu, M. Han, H. Zhu et al., Cascaded nanozyme based pH-responsive oxygenation for targeted eradication of resistant Helicobacter Pylori. Small 20(36), 2401059 (2024). https://doi.org/10.1002/smll.202401059
- M. Yao, W. Han, L. Feng, Z. Wei, Y. Liu et al., Ph-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur. J. Med. Chem. 233, 114236 (2022). https://doi.org/10.1016/j.ejmech.2022.114236
References
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
H. Dong, G. Wang, K. Feng, X. Wu, Y. Fan et al., Reference material of Prussian blue nanozymes for their peroxidase-like activity. Analyst 147(24), 5633–5642 (2022). https://doi.org/10.1039/D2AN01401G
H. Dong, W. Du, J. Dong, R. Che, F. Kong et al., Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 13(1), 5365 (2022). https://doi.org/10.1038/s41467-022-33098-y
M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu et al., When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59(7), 2565–2576 (2020). https://doi.org/10.1002/anie.201905645
Y. Sun, C. Wang, H. Li, K. Wang, Q. Bai et al., Sp carbon disrupting axial symmetry of local electric field for biomimetic construction of three-dimensional geometric and electronic structure in nanozyme for sensing and microplastic degradation. Angew. Chem. Int. Ed. 137(6), e202418707 (2025). https://doi.org/10.1002/ange.202418707
L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5(5), eaav5490 (2019). https://doi.org/10.1126/sciadv.aav5490
R. Zhang, K. Fan, X. Yan, Nanozymes: created by learning from nature. Sci. China Life Sci. 63(8), 1183–1200 (2020). https://doi.org/10.1007/s11427-019-1570-7
S. Wei, M. Sun, J. Huang, Z. Chen, X. Wang et al., Axial chlorination engineering of single-atom nanozyme: Fe-N4Cl catalytic sites for efficient peroxidase-mimicking. J. Am. Chem. Soc. 146(48), 33239–33248 (2024). https://doi.org/10.1021/jacs.4c13335
S. Zhang, Y. Li, S. Sun, L. Liu, X. Mu et al., Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun. 13(1), 4744 (2022). https://doi.org/10.1038/s41467-022-32411-z
J. Shen, J. Chen, Y. Qian, X. Wang, D. Wang et al., Atomic engineering of single-atom nanozymes for biomedical applications. Adv. Mater. 36(21), 2313406 (2024). https://doi.org/10.1002/adma.202313406
B. Jiang, Z. Guo, M. Liang, Recent progress in single-atom nanozymes research. Nano Res. 16(2), 1878–1889 (2023). https://doi.org/10.1007/s12274-022-4856-7
L. Shen, D. Ye, H. Zhao, J. Zhang, Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 93(3), 1221–1231 (2021). https://doi.org/10.1021/acs.analchem.0c04084
L. Yang, S. Dong, S. Gai, D. Yang, H. Ding et al., Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 16(1), 28 (2023). https://doi.org/10.1007/s40820-023-01224-0
Y. Zhu, Y. Liao, J. Zou, J. Cheng, Y. Pan et al., Engineering single-atom nanozymes for catalytic biomedical applications. Small 19(30), 2300750 (2023). https://doi.org/10.1002/smll.202300750
J. Abbenseth, J.M. Goicoechea, Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. Chem. Sci. 11(36), 9728–9740 (2020). https://doi.org/10.1039/d0sc03819a
A.K. Datye, M. Votsmeier, Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 20(8), 1049–1059 (2021). https://doi.org/10.1038/s41563-020-00805-3
V. Krishna Bayineni, V.R. Naira, R.-K. Kadeppagari, Biomedical applications of nanozymes: disease diagnosis and therapy. In: Handbook of Consumer Nanoproducts, pp. 1–13. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6453-6_91-1
Q. Chen, S. Li, Y. Liu, X. Zhang, Y. Tang et al., Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem. 305, 127511 (2020). https://doi.org/10.1016/j.snb.2019.127511
C. Pan, F. Wu, J. Mao, W. Wu, G. Zhao et al., Highly stable and selective sensing of hydrogen sulfide in living mouse brain with NiN4 single-atom catalyst-based galvanic redox potentiometry. J. Am. Chem. Soc. 144(32), 14678–14686 (2022). https://doi.org/10.1021/jacs.2c04695
L. Jiao, W. Xu, H. Yan, Y. Wu, C. Liu et al., Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 91(18), 11994–11999 (2019). https://doi.org/10.1021/acs.analchem.9b02901
X. Xie, D.P. Wang, C. Guo, Y. Liu, Q. Rao et al., Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 93(11), 4916–4923 (2021). https://doi.org/10.1021/acs.analchem.0c05191
X. Xie, Y. Wang, X. Zhou, J. Chen, M. Wang et al., Fe–N–C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst 146(3), 896–903 (2021). https://doi.org/10.1039/D0AN01846E
M. Liu, X. Li, S. Zhou, D. Men, Y. Duan et al., Ultrasensitive detection of mycotoxins using a novel single-atom, CRISPR/Cas12a-based nanozymatic colorimetric biosensor. Chem. Eng. J. 497, 154418 (2024). https://doi.org/10.1016/j.cej.2024.154418
X. Zhang, G. Li, G. Chen, D. Wu, X. Zhou et al., Single-atom nanozymes: a rising star for biosensing and biomedicine. Coord. Chem. Rev. 418, 213376 (2020). https://doi.org/10.1016/j.ccr.2020.213376
D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W.Q. Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11(1), 357 (2020). https://doi.org/10.1038/s41467-019-14199-7
M. Chang, Z. Hou, M. Wang, D. Wen, C. Li et al., Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem. Int. Ed. 61(50), e202209245 (2022). https://doi.org/10.1002/anie.202209245
X. Wang, X. Ren, J. Yang, Z. Zhao, X. Zhang et al., Mn-single-atom nano-multizyme enabled NIR-II photoacoustically monitored, photothermally enhanced ROS storm for combined cancer therapy. Biomater. Res. 27(1), 125 (2023). https://doi.org/10.1186/s40824-023-00464-w
S. Liu, Y. Jiang, P. Liu, Y. Yi, D. Hou et al., Single-atom gadolinium nano-contrast agents with high stability for tumor T(1) magnetic resonance imaging. ACS Nano 17(9), 8053–8063 (2023). https://doi.org/10.1021/acsnano.2c09664
K.E. de Visser, J.A. Joyce, The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41(3), 374–403 (2023). https://doi.org/10.1016/j.ccell.2023.02.016
R. Tian, Y. Li, Z. Xu, J. Xu, J. Liu, Current advances of atomically dispersed metal-centered nanozymes for tumor diagnosis and therapy. Int. J. Mol. Sci. 24(21), 15712 (2023). https://doi.org/10.3390/ijms242115712
W. He, J. Wu, J. Liu, J. Li, Single-atom nanozymes for catalytic therapy: recent advances and challenges. Adv. Funct. Mater. 34(16), 2312116 (2024). https://doi.org/10.1002/adfm.202312116
E.M. Hamed, V. Rai, S.F.Y. Li, Single-atom nanozymes with peroxidase-like activity: a review. Chemosphere 346, 140557 (2024). https://doi.org/10.1016/j.chemosphere.2023.140557
Y. Liu, M. Yao, W. Han, H. Zhang, S. Zhang, Construction of a single-atom nanozyme for enhanced chemodynamic therapy and chemotherapy. Chem. 27(53), 13418–13425 (2021). https://doi.org/10.1002/chem.202102016
W. Qiao, J. Chen, H. Zhou, C. Hu, S. Dalangood et al., A single-atom manganese nanozyme Mn-N/C promotes anti-tumor immune response via eliciting type i interferon signaling. Adv. Sci. 11(14), 2305979 (2024). https://doi.org/10.1002/advs.202305979
Y. Yin, X. Ge, J. Ouyang, N. Na, Tumor-activated in situ synthesis of single-atom catalysts for O2-independent photodynamic therapy based on water-splitting. Nat. Commun. 15(1), 2954 (2024). https://doi.org/10.1038/s41467-024-46987-1
W. Li, H. Li, G. Jiang, L. Yang, H. Nie et al., Creating single atomic coordination for hypoxia-resistant pyroptosis nano-inducer to boost anti-tumor immunotherapy. Adv. Mater. 37(9), 2414697 (2025). https://doi.org/10.1002/adma.202414697
J. Zhu, H. Wang, K. Li, X. Yuan, W. Hong, Black phosphorus nanosheets-loaded single-atom gold nanoenzymes for enhanced photodynamic therapy of hepatocellular carcinoma. Int. J. Nanomed. 19, 12583–12592 (2024). https://doi.org/10.2147/IJN.S414938
G. Feng, H. Huang, M. Zhang, Z. Wu, D. Sun et al., Single atom iron-doped graphic-phase C3N4 semiconductor nanosheets for augmented sonodynamic melanoma therapy synergy with endowed chemodynamic effect. Adv. Sci. 10(23), 2302579 (2023). https://doi.org/10.1002/advs.202302579
B. Geng, J. Hu, X. He, Z. Zhang, J. Cai et al., Single atom catalysts remodel tumor microenvironment for augmented sonodynamic immunotherapy. Adv. Mater. 36(25), 2313670 (2024). https://doi.org/10.1002/adma.202313670
D. Wen, J. Feng, R. Deng, K. Li, H. Zhang, Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer. Nat. Commun. 15(1), 9359 (2024). https://doi.org/10.1038/s41467-024-53488-8
Y. Su, F. Wu, Q. Song, M. Wu, M. Mohammadniaei et al., Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 281, 121325 (2022). https://doi.org/10.1016/j.biomaterials.2021.121325
M. Chang, Z. Hou, M. Wang, C. Yang, R. Wang et al., Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem. Int. Ed. 60(23), 12971–12979 (2021). https://doi.org/10.1002/anie.202101924
J. Guo, M. Jin, Y. Huang, L. Yin, X. Li et al., Ce single atom with cascaded self-circulating enzyme-like activities and photothermal activities for cancer therapy. Small 21(11), 2410041 (2025). https://doi.org/10.1002/smll.202410041
H. Lin, Y. Gao, L. Zhu, Y. Guo, L. Zhang et al., Rational design of single-atom nanozymes for combination cancer immunotherapy. Adv. Funct. Mater. 35(10), 2416563 (2025). https://doi.org/10.1002/adfm.202416563
R. Niu, Y. Liu, B. Xu, R. Deng, S. Zhou et al., Programmed targeting pyruvate metabolism therapy amplified single-atom nanozyme-activated pyroptosis for immunotherapy. Adv. Mater. 36(24), e2312124 (2024). https://doi.org/10.1002/adma.202312124
J. Cheng, L. Li, D. Jin, Y. Zhang, W. Yu et al., A non-metal single atom nanozyme for cutting off the energy and reducing power of tumors. Angew. Chem. Int. Ed. 63(16), e202319982 (2024). https://doi.org/10.1002/anie.202319982
Z. Wang, R. Chen, W. Zhang, P. Sun, N. Zhang et al., Boosting tumor apoptosis and ferroptosis with multienzyme mimetic Au single-atom nanozymes engaged in cascade catalysis. Adv. Funct. Mater. 35(2), 2412767 (2025). https://doi.org/10.1002/adfm.202412767
P. Muhammad, S. Hanif, J. Li, A. Guller, F.U. Rehman et al., Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 45, 101530 (2022). https://doi.org/10.1016/j.nantod.2022.101530
X. Zhou, S. Feng, Q. Xu, Y. Li, J. Lan et al., Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater. 191, 1–28 (2025). https://doi.org/10.1016/j.actbio.2024.11.023
X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17(11), 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
J. Ouyang, Z. Tang, N. Farokhzad, N. Kong, N.Y. Kim et al., Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today 35, 100949 (2020). https://doi.org/10.1016/j.nantod.2020.100949
H. Zhang, M. Yang, Q. Wu, J. Xue, H. Liu, Engineering two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 64(12), e202424768 (2025). https://doi.org/10.1002/anie.202424768
Z. Li, F. Liu, Y. Jiang, P. Ni, C. Zhang et al., Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 15(5), 4411–4420 (2022). https://doi.org/10.1007/s12274-021-4029-0
M. Zhao, J.D. Schoenfeld, A.M. Egloff, G.J. Hanna, R.I. Haddad et al., T cell dynamics with neoadjuvant immunotherapy in head and neck cancer. Nat. Rev. Clin. Oncol. 22(2), 83–94 (2025). https://doi.org/10.1038/s41571-024-00969-w
L. Sun, H. Liu, Y. Ye, Y. Lei, R. Islam et al., Smart nanops for cancer therapy. Signal Transduct. Target. Ther. 8(1), 418 (2023). https://doi.org/10.1038/s41392-023-01642-x
Z. Gao, Z. Song, R. Guo, M. Zhang, J. Wu et al., Mn single-atom nanozyme functionalized 3D-printed bioceramic scaffolds for enhanced antibacterial activity and bone regeneration. Adv. Healthc. Mater. 13(13), 2303182 (2024). https://doi.org/10.1002/adhm.202303182
K. Wang, M.-S. Yuan, P. Dai, J. Li, A. Tao et al., ZnFe layered double hydroxide nanosheets loaded with Cu single-atom nanozymes with multi-enzyme-like catalytic activities as an effective treatment for bacterial keratitis. Adv. Sci. 12(10), 2411999 (2025). https://doi.org/10.1002/advs.202411999
Y. Zhai, S. Pei, X. Qin, L. Zhang, X. Liu et al., Ultralow dose iron-copper bimetallic single-atom nanozymes for efficient photothermal-chemodynamic antibacterial and wound healing. Adv. Healthc. Mater. 14(3), 2403920 (2025). https://doi.org/10.1002/adhm.202403920
S. Chen, F. Huang, L. Mao, Z. Zhang, H. Lin et al., High Fe-loading single-atom catalyst boosts ROS production by density effect for efficient antibacterial therapy. Nano-Micro Lett. 17(1), 32 (2024). https://doi.org/10.1007/s40820-024-01522-1
B. Li, Y. Bai, C. Yion, H. Wang, X. Su et al., Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano 17(8), 7511–7529 (2023). https://doi.org/10.1021/acsnano.2c12614
Y. Jiang, H. Rong, Y. Wang, S. Liu, P. Xu et al., Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 16(7), 9752–9759 (2023). https://doi.org/10.1007/s12274-023-5588-z
J. Xiang, X. Yang, M. Tan, J. Guo, Y. Ye et al., NIR-enhanced Pt single atom/g-C3N4 nanozymes as SOD/CAT mimics to rescue ATP energy crisis by regulating oxidative phosphorylation pathway for delaying osteoarthritis progression. Bioact. Mater. 36, 1–13 (2024). https://doi.org/10.1016/j.bioactmat.2024.02.018
J. Yang, R. Zhang, H. Zhao, H. Qi, J. Li et al., Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2(4), 20210267 (2022). https://doi.org/10.1002/EXP.20210267
D. Chu, M. Zhao, S. Rong, W. Jhe, X. Cai et al., Dual-atom nanozyme eye drops attenuate inflammation and break the vicious cycle in dry eye disease. Nano-Micro Lett. 16(1), 120 (2024). https://doi.org/10.1007/s40820-024-01322-7
A.G. Kurian, R.K. Singh, V. Sagar, J.-H. Lee, H.-W. Kim, Nanozyme-engineered hydrogels for anti-inflammation and skin regeneration. Nano-Micro Lett. 16(1), 110 (2024). https://doi.org/10.1007/s40820-024-01323-6
G. Wu, S. Li, L. Luo, Y. Li, W. Zhang et al., Exploring single-atom nanozymes toward environmental pollutants: monitoring and control. Nano-Micro Lett. 17(1), 238 (2025). https://doi.org/10.1007/s40820-025-01734-z
G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16(1), 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu et al., Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013). https://doi.org/10.1021/ar300361m
H. Liu, B. Yu, P. Yang, Y. Yang, Z. Deng et al., Axial O atom-modulated Fe(III)-N4 sites for enhanced cascade catalytic 1O2− induced tumor therapy. Adv. Sci. 11(33), 2307254 (2024). https://doi.org/10.1002/advs.202307254
J. Wu, X. Zhu, Q. Li, Q. Fu, B. Wang et al., Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 15, 6174 (2024). https://doi.org/10.1038/s41467-024-50416-8
Z. Lang, X. Wang, S. Jabeen, Y. Cheng, N. Liu et al., Destabilization of single-atom catalysts: characterization, mechanisms, and regeneration strategies. Adv. Mater. 37(9), 2418942 (2025). https://doi.org/10.1002/adma.202418942
Y. Zhou, Q. Wang, X. Tian, L. Feng, Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanops for methanol electrolysis of hydrogen generation. Nano Res. 15(10), 8936–8945 (2022). https://doi.org/10.1007/s12274-022-4907-0
V. Muravev, G. Spezzati, Y.-Q. Su, A. Parastaev, F.-K. Chiang et al., Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 4(6), 469–478 (2021). https://doi.org/10.1038/s41929-021-00621-1
R. Zhong, C. Zhi, Y. Wu, Z. Liang, H. Tabassum et al., Atomic Fe-N4 sites on electrospun hierarchical porous carbon nanofibers as an efficient electrocatalyst for oxygen reduction reaction. Chin. Chem. Lett. 31(6), 1588–1592 (2020). https://doi.org/10.1016/j.cclet.2019.12.004
Y. Chen, P. Wang, H. Hao, J. Hong, H. Li et al., Thermal atomization of platinum nanops into single atoms: an effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 143(44), 18643–18651 (2021). https://doi.org/10.1021/jacs.1c08581
H. Xie, X. Xie, G. Hu, V. Prabhakaran, S. Saha et al., Ta–TiOx nanops as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 7(3), 281–289 (2022). https://doi.org/10.1038/s41560-022-00988-w
N. Tagaras, H. Song, S. Sahar, W. Tong, Z. Mao et al., Safety landscape of therapeutic nanozymes and future research directions. Adv. Sci. 11(46), 2407816 (2024). https://doi.org/10.1002/advs.202407816
H. Sun, L. Lv, Y. Bai, H. Yang, H. Zhou et al., Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int. J. Nanomed. 13, 8325–8338 (2018). https://doi.org/10.2147/ijn.s173063
K. Wang, Q. Hong, C. Zhu, Y. Xu, W. Li et al., Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity. Nat. Commun. 15, 5705 (2024). https://doi.org/10.1038/s41467-024-50123-4
F.D. Speck, M.T.Y. Paul, F. Ruiz-Zepeda, M. Gatalo, H. Kim et al., Atomistic insights into the stability of Pt single-atom electrocatalysts. J. Am. Chem. Soc. 142(36), 15496–15504 (2020). https://doi.org/10.1021/jacs.0c07138
S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong et al., Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4(5), 407–417 (2021). https://doi.org/10.1038/s41929-021-00609-x
X. Shi, Z. Wen, Q. Gu, L. Jiao, H.-L. Jiang et al., Metal-support frontier orbital interactions in single-atom catalysis. Nature 640(8059), 668–675 (2025). https://doi.org/10.1038/s41586-025-08747-z
Y. Pan, C. Zhang, Z. Liu, C. Chen, Y. Li, Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter 2(1), 78–110 (2020). https://doi.org/10.1016/j.matt.2019.11.014
J. Liu, Catalysis by supported single metal atoms. ACS Catal. 7(1), 34–59 (2017). https://doi.org/10.1021/acscatal.6b01534
C. Peng, R. Pang, J. Li, E. Wang, Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 36(10), 2211724 (2024). https://doi.org/10.1002/adma.202211724
Y. Liu, H. Zhao, Y. Zhao, Designing efficient single metal atom biocatalysts at the atomic structure level. Angew. Chem. Int. Ed. 63(13), e202315933 (2024). https://doi.org/10.1002/anie.202315933
B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58(15), 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
H. Dai, A. Han, X. Wang, P. Zhu, D. Wang et al., NIR-triggering cobalt single-atom enzyme switches off-to-on for boosting the interactive dynamic effects of multimodal phototherapy. Nat. Commun. 16(1), 2058 (2025). https://doi.org/10.1038/s41467-025-57188-9
B. Xu, S. Li, L. Zheng, Y. Liu, A. Han et al., A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 34(15), 2107088 (2022). https://doi.org/10.1002/adma.202107088
H. Liu, B. Yu, J. Shi, X. Peng, W. Zhou et al., Ultrahigh density copper (I) single atom enzymes for tumor self-cascade catalytic therapy. Chem. Eng. J. 480, 148273 (2024). https://doi.org/10.1016/j.cej.2023.148273
J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin et al., Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J. Am. Chem. Soc. 141(37), 14515–14519 (2019). https://doi.org/10.1021/jacs.9b06482
W. Liu, E. Shi, H. Wu, Y. Liang, M. Chen et al., Spatially axial boron coordinated single-atom nanozymes with boosted multi-enzymatic performances for periodontitis treatment. Adv. Funct. Mater. 34(39), 2403386 (2024). https://doi.org/10.1002/adfm.202403386
Q. Zhao, M. Zhang, Y. Gao, H. Dong, L. Zheng et al., Rearranging spin electrons by axial-ligand-induced orbital splitting to regulate enzymatic activity of single-atom nanozyme with destructive d−π conjugation. J. Am. Chem. Soc. 146(21), 14875–14888 (2024). https://doi.org/10.1021/jacs.4c04322
D. Wang, J. Wang, X.J. Gao, H. Ding, M. Yang et al., Employing noble metal–porphyrins to engineer robust and highly active single-atom nanozymes for targeted catalytic therapy in nasopharyngeal carcinoma. Adv. Mater. 36(7), 2310033 (2024). https://doi.org/10.1002/adma.202310033
L. Yin, S. Zhang, M. Sun, S. Wang, B. Huang et al., Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 35(28), 2302485 (2023). https://doi.org/10.1002/adma.202302485
J. Wang, T. Liao, Z. Wei, J. Sun, J. Guo et al., Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 5(4), e2000988 (2021). https://doi.org/10.1002/smtd.202000988
P. Li, Q. Guo, J. Zhang, R. Chen, S. Ding et al., How the microenvironment dominated by the distance effect to regulate the FeN4 site ORR activity and selectivity? Nano Res. 17(6), 5735–5741 (2024). https://doi.org/10.1007/s12274-024-6414-y
Z. Chen, H. Niu, J. Ding, H. Liu, P.-H. Chen et al., Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 60(48), 25404–25410 (2021). https://doi.org/10.1002/anie.202110243
L. Jiao, Y. Kang, Y. Chen, N. Wu, Y. Wu et al., Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today 40, 101261 (2021). https://doi.org/10.1016/j.nantod.2021.101261
Q. Sun, M. Wu, N. Niu, L. Chen, S. Liu et al., Regulating second coordination shell of Ce atom site and reshaping of carrier enable single-atom nanozyme to efficiently express oxidase-like activity. Nano Lett. 24(26), 8071–8079 (2024). https://doi.org/10.1021/acs.nanolett.4c01846
Y. Tang, Y. Han, J. Zhao, Y. Lv, C. Fan et al., A rational design of metal-organic framework nanozyme with high-performance copper active centers for alleviating chemical corneal burns. Nano-Micro Lett. 15, 112 (2023). https://doi.org/10.1007/s40820-023-01059-9
R. Lang, X. Du, Y. Huang, X. Jiang, Q. Zhang et al., Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120(21), 11986–12043 (2020). https://doi.org/10.1021/acs.chemrev.0c00797
Y. Chen, X. Zheng, J. Cai, G. Zhao, B. Zhang et al., Sulfur doping triggering enhanced Pt–N coordination in graphitic carbon nitride-supported Pt electrocatalysts toward efficient oxygen reduction reaction. ACS Catal. 12(12), 7406–7414 (2022). https://doi.org/10.1021/acscatal.2c00944
W. Song, C. Xiao, J. Ding, Z. Huang, X. Yang et al., Review of carbon support coordination environments for single metal atom electrocatalysts (SACS). Adv. Mater. 36(1), 2301477 (2024). https://doi.org/10.1002/adma.202301477
C.B. Ma, Y. Xu, L. Wu, Q. Wang, J.J. Zheng et al., Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem. Int. Ed. 61(25), e202116170 (2022). https://doi.org/10.1002/anie.202116170
S. Ning, Z. Zhang, Y. Ren, Y. Hou, D. Li et al., A synergistic dual-atom sites nanozyme augments immunogenic cell death for efficient immunotherapy. Adv. Sci. 12(7), 2414734 (2025). https://doi.org/10.1002/advs.202414734
Q. Ma, Y. Liao, Q. Zhao, R. Gan, Y. Ran et al., Triggering synergistic electronic effect via electron-directed transfer within PtNPs-Fe/NC oxygen reduction catalyst for zinc-air batteries. Small 21(14), 2500344 (2025). https://doi.org/10.1002/smll.202500344
R. Lang, W. Xi, J.-C. Liu, Y.-T. Cui, T. Li et al., Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019). https://doi.org/10.1038/s41467-018-08136-3
R. Zhang, B. Xue, Y. Tao, H. Zhao, Z. Zhang et al., Edge-site engineering of defective Fe–N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 34(39), 2205324 (2022). https://doi.org/10.1002/adma.202205324
H.-X. Liu, Z. Gao, H. Yan, S.-Q. Li, W.-W. Wang et al., Ensemble of single-atom catalysis and defect engineering in Cu1/CeO2 nanozymes for tumor therapy. Sci. China Chem. 66(9), 2590–2599 (2023). https://doi.org/10.1007/s11426-023-1677-4
J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
S. Wei, A. Li, J.-C. Liu, Z. Li, W. Chen et al., Direct observation of noble metal nanops transforming to thermally stable single atoms. Nat. Nanotechnol. 13(9), 856–861 (2018). https://doi.org/10.1038/s41565-018-0197-9
X. Mou, Q. Wu, Z. Zhang, Y. Liu, J. Zhang et al., Nanozymes for regenerative medicine. Small Methods 6(11), 2200997 (2022). https://doi.org/10.1002/smtd.202200997
Y. Li, Z. Xu, L. Fan, Folic-acid-functionalized Fe3O4@C@Pt nanozyme for synergistic catalytic-photothermal tumor therapy. New J. Chem. 49(5), 1795–1801 (2025). https://doi.org/10.1039/d4nj04927f
L. Huang, H. Pu, D.-W. Sun, Spatiotemporally guided single-atom bionanozyme for targeted antibiofilm treatment. Small 20(51), 2407747 (2024). https://doi.org/10.1002/smll.202407747
D. Wang, L. Ji, Y. Li, M. Xu, H. Wang et al., Iron-silver-modified quantum dots act as efficient catalysts in anti-cancer multitherapy through controlled, ultrasound-induced oxidation. Nat. Nanotechnol. 20(8), 1098–1107 (2025). https://doi.org/10.1038/s41565-025-01943-y
X. Wang, T. Liu, M. Chen, Q. Liang, J. Jiang et al., An erythrocyte-templated iron single-atom nanozyme for wound healing. Adv. Sci. 11(6), 2307844 (2024). https://doi.org/10.1002/advs.202307844
N. Tao, S. Chen, S. Mahdinloo, Q. Zhang, T. Lan et al., A pH-responsive single-atom nanozyme for photothermal-augmented nanocatalytic tumor therapy. Nano Today 57, 102371 (2024). https://doi.org/10.1016/j.nantod.2024.102371
Y. Tong, Q. Liu, H. Fu, M. Han, H. Zhu et al., Cascaded nanozyme based pH-responsive oxygenation for targeted eradication of resistant Helicobacter Pylori. Small 20(36), 2401059 (2024). https://doi.org/10.1002/smll.202401059
M. Yao, W. Han, L. Feng, Z. Wei, Y. Liu et al., Ph-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur. J. Med. Chem. 233, 114236 (2022). https://doi.org/10.1016/j.ejmech.2022.114236